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ABSTRACT : HLA is a framework providing functionalities for distributed simulations. It allows creation and
destruction of federations, synchronisations, sharing objects and so on, but a way to create objects dynamically is

lacking.

Our aim is to develop a distributed platform for Collaborative Virtual Environment called oRisDis. This
environment will be based on oRis, an agent-oriented language and simulation engine which allows agents activity
management. Dynamic prototyping is provided with oRis by immersion through the language. This means that a
user can modify or add agents while running. Of course, such a feature has to be kept in oRisDis.

In this paper, we present our architecture providing a framework for Distributed Collaborative applications. Its

main specificity is the dynamic object management service.

1. Introduction

For many years, the Department of Defense
(DoD) strives to standardize network communications
between simulations. DoD is certainly the most impor-
tant client in simulation softwares and its main goal is
to reduce cost in developments. The first normaliza-
tion was the Distributed Interactive Simulation pro-
tocol (DIS) which implemented a number of Protocol
Data Unit (PDU). Many distributed platforms used
this protocol to implement communications between
users but its main disadvantage was its orientation
towards military simulations. Some of them imple-
mented extensions to provide more general PDU.

On the other side, Aggregate Level Simulation
Protocol (ALSP) was available. Aimed at provid-
ing a support for parallel discrete event simulations,
it supports interoperability[3]. These two architec-
ture are now merged into a single one called the High
Level Architecture (HLA). The HLA core is the Run-
Time Infrastructure which can be seen as a middle-
ware managing messages exchange between different
users. This RTT provides six types of services (federa-
tion, object, declaration, data distribution, ownership
and time management) which can be divided into two
groups : a part which manages federation and a part

managing the objects’ attributes.

Management of objects information first needs to
be described in a specific file *.fed’ which describes the
object model of the simulation. To interoperate, each
federate needs to use the same object model which pro-
vides them knowledge of what objects will be available
during federation execution. So each federate will be
able to create or discover these objects, send or receive
updates from objects’ attributes.

Such an architecture is adequate for simulations
since it simulates a scenario. It means all informations
exchanged during execution are known before simula-
tion begins. But this way of acting does not scale to
every distributed environments. “Imagine a net-VE
participant bringing a new, previously unseen object
into the environment and being able to see, hear, and
interact with instantly and meaningfully” as stated [9].
This is the Holy Grail that every net-VE would like to
develop.

In section 2., we present our platform based on
two components called oRis and ARéVi which pro-
vides a multi agent based prototyping tool for a single
user. This section will highlight specific features pro-
vided by this environment. Next section 3. will discuss
about dynamic incompatibilities between oRisDis and



HLA. Then section 4. will explain how we circumvent
this limitation for providing full dynamicity into our
distributed platform.

2. oRis/ARéVi platform

The core of our architecture, oRis[4], is a Multi
Agent System (MAS) developed in our laboratory.
Available on many platforms (1386 Linux, PPC Linux,
SGI Irix and Windows), it allows the execution of ap-
plications developed with agents. oRis is an agent lan-
guage and also a simulation platform.

oRis is an object oriented language. This means
that object oriented programming style is used. Thus,
entities are described by attributes, methods and
classes with multiple inheritance. Its syntax is close
to Java and C+4. Moreover, oRis is also an agent
oriented language. This is done by providing a special
method : woid main(void). Available in each agent,
this method describes the agent’s behavior. It’s the en-
try point for agent execution. The scheduler infinitely
reexecutes this method.

By being interpreted, oRis doesn’t attain perfor-
mance from compiled languages such as Java or C++.
But low level code has been optimized through a deep
coupling with the C++ language. Native classes in
oRis have been coded in C++ to speed up the ap-
plication execution. But oRis takes advantage of its
interpretation by providing dynamicity. Dynamicity
enable modifications into the application while exe-
cuting.

This mean that during execution, availability is
given to modify the application behavior to the de-
sired objective. This functionality is really important
in prototyping since it allows modifications without
recompiling or restarting the application.

Extending the oRis core, ARéVi[5] which stands
for Atelier de Réalité Virtuelle or Virtual Reality
Toolkit is a graphical environment which allow repre-
sentation of entities into 3D. This toolkit can be used
as a stand alone tool for rapid prototyping or can be
embedded into an existing system. Based on the no-
tions of entities, scenes (group of entities) and viewers,
ARéVi handles various features such as animations,
level of details, lightning or collision detection. Inter-
actions is provided through usual peripherals or spe-
cialized peripherals like 3D mice, force feedback joy-
sticks, flock of birds and so on.

3. HLA in DVR

The HLA is an architecture developed to provide
a common architecture for Modeling and Simulation
(M&S). This architecture facilitate reuse of individual
federates and interoperability between federates.

When planning an execution, the designer needs
to define a Federation Object Model (FOM) which de-
scribes the set of object classes and the set of object
interactions that will be used during execution. More-
over, the attributes and parameters of these classes are
also described. The designer prepares a “scenario” by
describing what classes are going to be used for repre-
sentating entities.

For simulations, this way of acting is enough since
no code or behavior changes aren’t going to occur. Ev-
erything has been prepared before execution : what in-
teractions are available and how do they react to these
interactions.

Except the shared database synchronized through
RTT services, a federate application acts like any pa-
rameterized applications. For example :

if (receivedInteraction = ‘‘MissileImpact’’)
then
if ( receivedInteraction.strength >= 10 )

then
isDestroyed = true
else
damage += receivedInteraction.strength
endif
endif

The Run-Time Infrastructure (RTT) is initialized
by the Federation Execution Data (FED) file but after
starting, no modifications can occur except attribute
transportation scheme.

In Distributed Virtual Reality (DVR) or Collabo-
rative Virtual Prototyping applications, needs for code
or entity modification is required. We must be able to
add new entities coming from an external file or a net-
work link. We need to :

e create new classes not “conceived” before start-
ing,

e modify existing modules in a class,
e modify existing modules in an instance.
These requirements lead us to consider the FED

file as an initialization file that describes only a part
of exchanged information.

3.1 Solutions with HLA

If we want to use the HLA architecture and provide dy-
namicity, we need to encapsulate HLA into a broaden
mechanism. Two solutions are thinkable :



1. Use HLA when objects are known before run-
time and use another communication interface
for other objects,

2. Translate objects designed at runtime into
known objects and use a specific protocol.

The first one is not really interesting since we
need to redefine every RTT services for objects dynam-
ically added. The way of acting would be thinkable
for very specific needs like using a specialized network
— with high bandwidth or very low latency — on only
a small subset.

The second one needs to define a protocol be-
tween federates to define how object instance at-
tributes are going to be exchanged and how to asso-
ciate the code with those attributes. This last solution
is the one retained by us.

To attain this dynamicity, we must strive to find a
solution using HLA feasibilities while maintaining the

most services usable. Indeed, we could simply trans-
mit each update coming from new unknown object
attributes through RTT interactions but this way of
acting wouldn’t keep HLA services available for these
attributes.

Our solution keep part of services available by
taking advantage of two points available in the HLA
design :

1. No type has to be specified to an attribute. If we
need to change data format, from real to string
or any other conversion, HLA doesn’t take care
of this since every attribute exchanges are for-
mat independent. The designer is responsible to
care of what is exchanged.

2. No limitations for object or interaction instances.
If an object needs to be created hundred times,
HLA does support it.
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Figure 1. Manager’s internal components

4. oRisDis architecture

The main goal of the oRisDis architecture is to
provide, to every users participating into the execu-
tion, a common representation of the simulated world.
On one side, we have the oRis application built with
agents. This means state variables and behaviour are
embedded into the agent himself. Moreover, the ap-
plication allow users to interact with the environment
by using interaction devices. On the other side, we
have the simulation executive which is in charge of
managing information exchange. Exchanges between
the application and the others simulation executives
is done through sending, receiving and delivering the
events.

To enable sharing of the common world, require-

ments are made on agents. Firstly, agents have to
be able to send their changes to the simulation exec-
utive. Secondly, simulation executive have to reflect
changes coming from foreign agents. To meet these
goals, we use the real/ghosts model[2]. In this model,
real represent the local entities which have full capa-
bilities (behaviour). These entities code is the one that
the designer modeled. Conversely, the ghost represent
the real in a simplified way. Based on state informa-
tion exchanged, the ghost tries to meet the real entity
behaviour (visual aspects, hearing, behavioural, .. .).

More than simply reflecting the real behaviour,
the ghost has to be interactable. It means that if a user
interacts on a ghost entity, the entity have to transmit
these interactions to the real one. A full path from a



ghost is shown on figure 2[7]. The steps are as follows :

1. A user on session 2 is interacting on its local
ghost entity called Ghostl.

2. This interaction made modifications that need to
be reported to the real entity. So, modifications
are transmitted from the ghost to the simulation
executive and sent to the real simulation execu-
tive.

3. On receipt, the simulation executive transmit in-
formation to the real entity. This entity applies
the modifications locally.

4. As internal modifications have been made, the
real entity send updates to the simulation exec-
utive. Network transmission occurs.

5. On receipt, ghosts (Ghostl and Ghost2) are lo-
cally updated.

Session 2

Sessionl

Session 3

Figure 2. Real and ghosts interactions

In HLA, these information exchanges between
federates or sessions are made with the use of ob-
ject class instances or interaction class instances. The
shared internal state of an agent is represented by an
HLA object class instance. So, every update on the
state of an agent is transmitted to the other federates
via the Update Attribute Values service. As an at-
tribute can be owned by only one federate at a time, a
ghost can only talk to its real via the Send Interaction
service.

All these exchanges are made through HLA. To
simplify the prototyping tools development, exchanges
between the ambassadors (RTIambassador and Fed-
erateAmbassador) are made through a more adapted
interface called the Manager Executive.

4.1 oRisDis Manager Executive

Being the interface between the application et the sim-
ulation executive, the manager provides a set of higher
level services. This element manages every exchanges
made with the different sessions into the execution. It
can be split into three parts. The first one consists of

the HLA ambassadors. This is required for exchang-
ing information between the federation executive and
the RTI. The second part is the dynamic object man-
agement service (based on Sender, Receiver and Infor-
mation Base). It provides the same functionnalities
as the RTT object management service except that in-
stance level dynamicity is taken into account. Last,
the third part extend the manager capabilities by pro-
viding entry points (Dispatcher and Specific Features
Manager).

4.2 Dynamic Object Management

Main point in the architecture, the dynamic object
management part extend the HLA object management
service by allowing dynamic (while executing) adding
of new classes or new attributes not previously de-
clared in the object model. One solution envisaged by
Naud [6] is to restart the RTI without stopping the fed-
erates. We don’t think that this solution is viable since
restarting the RTI may take a while for being ready.
Instead of this, we are using an intermediate for hiding
the real implementation of the object model.

This is achieved by :

1. creating a generic class with an associated at-
tribute which will “carry” the value associated
to the new added attribute,

2. having a database which will keep information
equivalence between oRis and HLA,

3. adding components between the application and
the ambassadors. It will act as an intermediary.

4. providing a protocol to synchronise the local
database disseminated accross the different fed-
erates.

4.2.1 A class for a dynamic attribute

The object model needs to be defined before execution
into the Federation Execution Data (FED) file. While
running, no modifications can occur. Thus, only exist-
ing attributes and classes can be used. To prevent dy-
namic adding, a particular class compound with only
one attribute is defined :

(class ObjectRoot

(class Dynamic
(attribute Attribute reliable timestamp)
)
)
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Figure 3. Dynamic Object Model

This class will be instanciated each time a new
attribute is adding to an instance. The same process
occurs when a new unknown class is added dynami-
cally. For example, if the following class is defined in
the Object Model :

(class AirPlane
(attribute Position best-effort receive)
(attribute Orientation best-effort receive)

it would be impossible in the normal case to add
a new Lights attributes while running. But if we hide
how is managed the object model, the modified object
model will be as seen on figure 3.

For oRis, the object model looks like the one de-
scribed on the left. But an instance of this model is

done (on the HLA side) by creating two class instances
(an AirPlane instance and a DynamicClass instance).

4.2.2 Keeping the object model consistent

The Information Base component maintains the local
database. Its objectives is to keep relationship between
the oRis pair attribute/instance et the HLA pair at-
tribute / instance.

The UML class diagram shown on figure 4 de-
scribes the relationship between the different elements.
An oRis instance consist of two parts. A static part
represented by the class defined in the object model
and a dynamic part added each time that a new
unknown attribute is added to the instance. This
database is filled at initialisation. When the ob-
ject model is read, static part of the agent is filled.
At runtime, when new attributes are added, a new
GenericClass is added and the corresponding at-
tribute is associated with.

Moreover, the database have to be bidirectional.
When an information is sent from oRis to the RTI, the
database must retrieve the desired pair HLA attribute
and HLA class instance. And when an information
is sent from the RTI to oRis, the pair oRis attribute
name and oRis instance name has to be retrieved. All
these informations are then used by the agent’s am-
bassadors.
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4.2.3 Higher level ambassadors

For hiding internal management of information, the
Information Base is surrounded by two components.
One is designed for sending information (Sender) to
the RTI and the other for receiving information (Re-
ceiver) for the RTI. Running of these two components
is shown on the sequence diagrams[8] figure 5 and fig-
ure 6.

4.3 Extensions for the Manager

Sharing the same environment representation between
the different participants is only one subset of the re-
quired features. To allow extensions to the system,
writing to the RTI and reading from the RTI accessi-
bility must stay available. Writing is made through the
RTIambassador via interactions and reading is routed
by the Dispatcher to the concerned specific manager
(Specific Features Manager).

Indeed, many extensions are needed such as dy-
namic code parsing, agent migration (load balancing or
session leaving) and message exchange between agents.
Last point has a similar behavior as the JavaSpace us-
age made in [10].

5. Conclusion

In this article, we presented our architecture for
building interactive and distributed prototyping appli-
cations. The HLA architecture has been integrated by
providing two specific components which acts as inter-
mediary between agents and the RTI. But, one of the
trouble we encounter was the lack in instance dynamic-
ity. By instance dynamicity, we means that the object
model can’t evolve during execution and is somewhat
constraining for our applications. To prevent this, we
created a simple database which is in charge of simu-
lating this dynamicity.

Though being functional, one improvement would
be to develop a new component for the Object Man-
agement RTT 1.3NG service[1] which take into account
dynamicity.
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