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ABSTRACT : This paper presents how the CERTI HLA API has been modified to include improvements needed for runtime
dynamic applications. This means that some applications need to change data structuration while running to adapt to new

behaviors as it was stated in a previous article[7].

Current HLA standard is turned away to military simulation which assumes — requires ? — exchanged information is
already known before starting. We want to propose a new API subset in order to provide more flexible interactions with internal

data for the declaration and object management services.

We details how this new API was added to a HLA implementation called CERTI.

1. Introduction

The HLA architecture is aimed at providing dis-
tributed simulations but is also particularly interesting for
distributed virtual reality applications. Its opening to other
areas, the way interactions are done between federates,its
available services and its standardized API are promising.
These are the main reasons why it was choosen for our col-
laborative prototyping platform.

But despite all these features, this architecture is not
flexible enough for all usage — and will certainly never. Our
problem affects the unability to change the object model
while running the application. Our prototyping platform
offers the ability to redesign a prototype while executing,
avoiding to stop the application to make changes. Other
platforms such as Bamboo[8] are expecting this runtine
modification availability.

In this paper, we present the new HLA API features
added to the CERTI RTI implementation. Only eight meth-
ods, four RTIambassador and four Federate Ambassador,
were added to provide these on-the-fly modification capa-
bilities. We first introduce our platform — oRisDis, a dy-
namic prototyping platform — and the CERTI RTT imple-
mentation.

2. The oRisDis platform

oRisDis, our distributed platform, consists of three
main components. First, oRis is the core architecture which
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provides a multi agent language and a simulation engine for
agents described in this language. The second component,
AREVi, is a 3D rendering API plugged around the oRis
core. It provides many capabilities for rendering and exter-
nal user interactions. The last one, oRisDis is our work in
progress to provide distributed facilities to the oRis/ARéVi
environment. Based on HLA, it provides data sharing. This
data sharing is done the most transparently as possible to
avoid bothering the designer with distribution problems.

2.1 oRis environment

oRis'[4], the core component, is a Multi Agent System
(MAS) developed in our laboratory. Built for many plat-
forms (IA32 Linux, PPC Linux, SGI Irix and Windows),
oRis provides an agent language and a simulation platform.

oRis provides an original prototyping tool. Indeed,
instead of designing a prototype in phases between off-line
and on-line design, oRis provides enough flexibility to fully
modify prototype during simulation.

2.1.1 Prototyping

Prototyping consists in designing a model as expected.
Classical prototyping is a round trip between off-line de-
sign and on-line tests. This way of acting tends to disap-
pear in favor of complete numerical design. We want to go



a step further by allowing its designer to modify its model
while testing. Figure | shows interactive prototyping where
adjustment are now done on-line.

2.1.2 An agent language

Based on a syntax similar to C++ and Java, oRis is a lan-
guage very close to object oriented languages with few
more features.

Features provided by this language are agent behav-
ior, the main () module, agent communication capabili-
ties, and dynamic behavior evolving.

In the main () module, we can describe the agent’s
behavior. At the simulation startup, this module is called
and represent the agent’s entry point. Then, this module is
periodically called, boundlessly, by the simulation engine.

Generate
first prototype

Adjust prototype
online

Design Usage / perfecting

Figure 1. Interactive prototyping approach (from [4])

Agent communication capabilities allows agents to
share data. This can be simple data such as entity state
or more complex information described in ACL” language.
ACL is a formalized way for communicating between
agents. FIPA® or KQML* are some of these ACL[6].

Dynamic evolving is a specificity of our platform. In-
deed, during execution, agents can evolve in a way that was
unpredicted by its designer. The whole language is avail-
able at runtime and is interpreted. We call this a dynamic
language.

2ACL : Agent Communication Language

3FIPA : Foundation for Intelligent Physical Agents
4KQML : Knowledge Query and Manipulation Language
S AREVA, Atelier de Réalité Virtuelle
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2.1.3 A simulation engine

Designed for simulating systems behaviors, the platform
provides a simulation engine for making live agents. A fine
tuned scheduler has been designed to avoid bias and thus
each agent lives with fairness to its neighbor.

The aim of the engine is to simulate each agent behav-
ior without privileging one of them and to provide complete
access to the agent code and the oRis language. This allows
an user to modify the application while running.

2.1.4 ARGéVi toolkit

Based on oRis core component, ARéVi[5]°, our Virtual Re-
ality Toolkit provides a 3D graphical environment. It al-
lows entity representation in three dimensions and user in-
teraction with adapted devices.

It can be used as a stand-alone tool for rapid proto-
typing or can be embedded into an existing system. Based
on notions of entities, scene (group of entities) and view-
ers, it handles various features such as animations, level of
details, lightning or collision detection.

Interactions are provided through usual or VR periph-
erals like 3D mice, force feedback joystick, flock of birds,
Phantom and so on.

2.2 oRisDis Multiuser Platform

oRisDis is made of two parts: a plug-in C++ module for
oRis and some oRis code. The module provides bindings
between oRis language and the C++ HLA APL

The oRis code, called oRisRTI, is another RTI, de-
signed specifically for our platform. Agents living onto
the platform can interact with this oRisRTI. This latter is
in charge of translating oRis agent calls into HLA calls.
Conversely, it translates HLA calls into agent module calls.
This is shown on figure 2.

3. CERTI RunTime-Infrastructure

The CERTI is a RTI prototype[2] originally devel-
oped at the ONERA® — a french governmental laboratory
involved in aeronautic and spatial studies and researches —
which provides security extensions[ 1]. This project started
in 1996 and has been released as free software recently’.

Currently, only a subset of the HLA Interface Specifi-
cation IEEE 1516 is implemented (federation management,



synchronization, object management, some other services).
But new capabilities are added each month.
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Figure 2. Double RTT infrastructure

3.1 Architecture

The CERTT architecture is build around three components
communicating each others by socket :

e a RTI library linked with each federate,

e alocal process for the RTT Ambassador (RTIA),

e a global process for data exchanges and RTT services

with the RTI Gateway (RTIG).

The relations between each component is summarized
on figure 3. They are detailed in the next three sections.

HLA Interface
libRTI libRTI
UNIX socket

TCP socket

———————————————— =~ WAN

Figure 3. CERTTI architecture (from [2])

8LRC : Local RTI Component
O http:/fwww.dmso.mil/public

3.1.1 The libRTI library

This library is linked with the federate application. It is
a small library which provides the HLA API. Each call to
a RTI ambassador method is transformed into an UNIX
socket call containing attributes information. It is sent to
the RTTA and it then waits for an answer coming from the
RTIA.

Calls to federate ambassador are received when the
tick method is called. They are extracted from the UNIX
socket call and transmitted to the application federate am-
bassador.

3.1.2 The RTIA

The RTIA — RTI Ambassador — receives data information
coming from the libRTI through UNIX socket or from the
RTIG through TCP (and/or UDP) socket. It acts as an inter-
mediary between the federate and the RTT. It is comparable
to the LRC® from the DMSO’ (Defense Modeling Simula-
tion Office) RTIL.

Some requests from support services such as Get
Attribute Handle or Get Ordering Name can
be retrieved from the RTIA without being transmitted up
to the RTIG. This allows the RTIA to answer quickly to re-
quest from its federate. This can be done since the RTIA
contains an identical copy of its RTIG object model.

Other requests are sent to the RTIG and if accepted,
some actions can be done locally.

3.1.3 The RTIG

The RTIG — RTI Gateway — is a central server which serves
two purposes. Firstly, it permits data exchange between
the differents federate through dialog between RTIG and
RTIAs. Secondly, its centralized model allows a simple
implementation of the RTT services.

All data exchange between federates are received by
the RTIG. For example, a call to the service Update
Attribute Values is received by the RTIG. Then
the RTIG determines implied federates and send a call to
the federate ambassador service Reflect Attribute
Values.

3.1.4 Data-Transfer scenario

A typical data exchange is shown on figure 4. UAV is the
acronym for Update Attribute Values and RAV



refers to Reflect Attribute Values. A message
from federate is transmitted to its RTIA up to the RTIG.
This message is processed and then forwarded to other
RTIA up to the concerned federates.

4. Dynamic Object Model API

Simulations using the HLA API are developed by en-
terprises that must respond to strict specifications. Estab-
lished before the development and certainly certified by the
american US army, the object model is fixed.

We are developing a collaborative prototyping tool
and as its name implies, the application needs refinements
and improvements while designing. So does the object
model. A fixed object model prevents us from doing on-
line modifications.

A first version of our prototyping tool circumvent this
limitation by encapsulating the instances into another API
providing extensions. This is quicly explained in the first
section. Our second implementation is using the CERTI
implementation. This implementation has been modified
accordingly to include new functionnalities allowing us to
modify the object model while executing and is detailled in
the remainder of this paper.

Federate 1 RTIA RTIG RTIA Federate 2
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Figure 4. Data transfer scenario (from [2])

4.1 Encapsulating to provide a dynamic ob-
ject model

A first solution to provide a dynamic object model to our
application was to encapsulate RTI calls into another API
which hides the HLA static object model[7]. The imple-
mentation was introducing a class into the object model to
provide capability to extend the application object model.
This class has only one attribute such as presented on fig-
ure 5.

If an AirPlane has only two parameters

Position, Orientation and we want to extend this
object model to be able to see light state. We can add a new
attribute Lights to our application object model. Since
HLA can’t do so, it is hidden behing an instance from the
Dynami c class.

(class objectRoot

(class Dynamic
(attribute Attribute reliable timestamp)
)

Figure 5. Class for an external dynamic object model

A specialized protocol is used — by exchanging HLA
interactions — which informs which instance from the
Dynamic class is related to the application instance at-
tribute. On figure 6, two instances from AirPlane are
shown. AirPlane object model has been enriched by a
new Light attribute and this is reflected on instances by
a new DynamicClass which carries information on the
HLA side (ellipses show added information).

AirPlane.1
instances L— Position
— - L— Orientation
DynamicClass.1
AirPlane L— Attribute
L— Position
L— Orientation
AirPlane .2
L— Position
D . L— Orientation
modified object model >

DynamicClass.3
L— Attribute

Figure 6. Dynamic Object Model

This solution was a simple way to avoid this difficulty.
But not all services where usable with this solution. The
adding of new methods to the HLA API was the only way
to take full advantage from HLA.

4.2 Enrish the API for online modification

The object model is built when lauching the application.
The RTI receives a file to read which informs it what
kind of data (objects and interactions) are going to be
exchanged during the execution. In the CERTI imple-
mentation, these information are used to build class in-
stances (ObjectClass, ObjectClassAttributes,
...) which are containing associations (parent and son
classes, attributes), subscribers, publishers and instances.
These information are maintained by the RTIG and each
RTIA.



Developping new RTIambassador and federate am-
bassador methods needs to be able to twist the RTI in-
stances to insert new object classes and/or new attributes.
We only developped a new API for object classes since we
are not yet interested in adding new interactions. However,
the implementation done for object classes doesn’t differ
for interactions since interactions are simpler than objects.

4.2.1 The Object Model

The object model is initially described in the FED' file.
A FED file example is given below. Information described
into this file are classes inheritance and class attributes.

;7 (class <name>
H (attribute <name> <transportation>
<ordering> [<space>])
A
ii)
(class entity
(attribute location best_effort receive)

Class attributes information are its name, transportation
type, ordering and optionally associated space. Once set, inheri-
tance and class attribute list (names) can’t be changed.

Transportation is modified by the method Change
Attribute Transportation Type. Ordering can be
changed by the method Change Attribute Order Type.
Last parameter associates an attribute to a routing space defined
previously in the FED file. This is an optional feature that can be
omitted if spaces are not used. This space can’t be changed during
execution but any regions can be created for needs. Currently, no
services are provided for enabling (or disabling) data distribution
management.

For interactions, the same process is developed. The
Change Interaction Transportation Type is used
for changing transportation, Change Interaction Order
Type allows changes to the order. In the same manner, space
is optional and cannot be changed during execution. Initially, all
these information is set in the FED file :

;; (class <name> <transportation> <ordering>
[<space>]
HY (parameter <name>)
i
ii)
(class splat reliable timestamp
(parameter target)

Interactions differs from object classes because transporta-
tion, ordering and space are applied to the whole interaction class
while object class applies these specifications to attributes (at-
tribute granularity).

10FED : Federation Execution Data

4.2.2 The API methods

A first step to provide a dynamic object model is to allow adding
of any element into the object model. Thus, new object or inter-
actions classes can be added to the object model by setting its in-
heritance in the tree hierarchy. Also, new attributes or parameters
have to be added to the object model. The appendix describes the
RTI and federate ambassador methods added for providing these
new services.

Object Class To provide a dynamic object model, we create
only two methods for the RTIambassador and two other methods
for the federate ambassador. All the implied operations are shown
on figure 7.

The first method Add Object Class is used to add a
new object class. Only information are its inheritance described
by its first parameter and its name, the second parameter. The last
parameter is used to transmit other data to other federates.

This call is received by the RTI and if the parent doesn’t
exists or if the object class name has already been used, an excep-
tion is thrown. Otherwise, the RTI adds this new object class to its
object model and informs the other federates to do so. This result
inacallto Discover Object Class which will contain the
same information.

The federate receiving this call can process data locally to
being able to treat this new added class. This is done by calling
the usual method Get Object Class Handle.

Likewise, an attribute can be added to an object class by
the call to the method Add Attribute. If the owner class
handle is correct and the attribute has not yet been used, this at-
tribute is added to the RTI. A call Discover Attribute to
the federates reflects the new added attribute. Then, the feder-
ate can retrieve the attribute handle by calling Get Attribute
Handle.

addObjectClass() i

= discoverObjectClass() I
getObjectClassHandle() —

addAttribute() i

= discoverAttribute() I
getAttributeHandle() —

Figure 7. The dynamic object model API sequence

Interaction Class For interactions, the process is similar and
is shown on figure 8.



Add Interaction Class is used to add a new inter-
action class in the object model tree. Inheritance is described
by its parent handle parameter. This service is processed by
the RTI and results in a Discover Interaction Class
to the other federates. In the same manner, a new parameter
can be added by calling Add Parameter. This results in a
Discover Parameter method call.

addInteractionClass() i

= discoverInteractionClass() I
—~] 4{ subscribelnteractionClass() .

‘ getInteractionClassHandle() '7-»

addParameter() i

= discoverParameter() I
getParameterHandle()

——
d
Figure 8. The dynamic interaction object model API se-
quence

Discovering Discovering of a new interaction or object class
is done based on federate registration. Discover Object
Class or Discover Interaction Class is sent to the
federate only if it has subscribed to the parent class or if parent is
objectRoot or interactionRoot.

For parameters, federates are informed of any new cre-
ated parameters when it subscribes to the interaction by calling
Subscribe Interaction Class. This mean that every
object model modifications are marked to be sent to a federate
if it subscribes to such a class.

For attributes, we cannot wait that federate subscribes
to the object class. This way of acting is impossible since
IEEE standard[3] says that any subscription to an object
class (Subscribe Object Class Attributes) with an
empty set of class attributes is equivalent to an Unsubscribe
Object Class.

Two solutions are thinkable. First one is to modify the
Subscribe Object Class Attributes to accept sub-
scription if object class designator is a dynamic one but this is
a special behavior that we do not retained.

The second one we used is to send a Discover
Attribute to every federate that subscribed to the associated
parent class.

4.2.3 Initial settings

When a new attribute or a new interaction is registered, its val-
ues are defaulted. Transportation is set to reliable and ordering to
receive. This can be changed by calling corresponding methods.
For associating a routing space to an attribute or an interaction,

we added new fonctionnalities to the HLA API. This is described
in the next section.

5. Routing space API extension

Previous methods doesn’t allow using routing spaces since
no such parameter is available. Indeed, we chose not to provide
two methods : one without and one with data distribution manage-
ment. Instead of this, we added further methods for modifying
routing spaces associated with attributes or interactions. These
methods are shown on figure 9.

‘ changeAttributeRoutingSpace() ii

>} notifyAttributeRoutingSpaceModification().

changelnteractionRoutingSpace() ii

} notifyInteractionRoutingSpaceModification() .

createRoutingSpace() i

= discoverRoutingSpace() I

“—

Figure 9. Routing space modifications during execution

Change Attribute Routing Space and Change
Interaction Routing Space allows changing or setting
the associated routing with a set of attributes and an interaction.
We are conscious that modifying an existing used set of attributes
cannot be done easily. Currently, these methods are intended only
for setting the routing space with newly created attributes and in-
teractions.

These two methods results in calls to Notify
Attribute Routing Space Modification and

Notify Interaction Routing Space Modification.

These federate ambassador calls are needed for correctly set-
ting Register Object Class With Region and Send
Interaction With Region.

6. Conclusion

In this paper, we proposed a new API subset for managing
evolving object model. These features are lacking in the HLA
standard and may be needed by some networked applications —
such as prototyping tools or long lasting adaptive environments.

We shown that implementing a dynamic object model is re-
ally a simple operation to do. Method behavior doesn’t differ from
usual ones, one call to Add Object Class results in n calls
to Discover Object Class. The only trouble we encoun-
tered was keeping the object class handle counter since it was
destroyed after the FED file was read.

Further control over the object model by modifying the
routing space set becomes more tricky to handle. More in depth
should be done in this part of the API.

This feature is essential for our application and we proved
that some of these features could be added to the HLA API easily.
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Appendix

RTIambassador API extension

class RTIambassador

{

// Object class modifications

void

addObjectClass (
ObjectClassHandle theParent,
const char * theName,
const char * theTag)

throw (
ObjectClassNotDefined,
ObjectClassAlreadyDefined,
FederateNotExecutionMember,
ConcurrentAccessAttempted,
RTIinternalError);

void

addAttribute (
ObjectClassHandle theClass,
const char * theAttributeName,
const char * theTag)

throw (
ObjectClassNotDefined,
AttributeAlreadyDefined,
FederateNotExecutionMember,
ConcurrentAccessAttempted,
RTIinternalError)

// Interaction class modifications

void

addInteractionClass (
InteractionClassHandle theParent,
const char * theName,
const char * theTaqg)

throw (
InteractionClassNotDefined,
InteractionClassAlreadyDefined,
FederateNotExecutionMember,
ConcurrentAccessAttempted,
RTIinternalError);

void

addParameter (
InteractionClassHandle theClass,
const char * theParameterName,
const char * theTag)

throw (
InteractionClassNotDefined,
ParameterAlreadyDefined,
FederateNotExecutionMember,
ConcurrentAccessAttempted,
RTIinternalError);

// Routing space modifications



void ObjectClassHandle theParent,

changeAttributeRoutingSpace ( const char * theName,
ObjectHandle theObject, const char * theTag) = 0;
const AttributeHandleSet& theAttributes,
SpaceHandle theSpace) virtual void

throw ( discoverAttribute (
ObjectNotKnown, ObjectClassHandle theClass,
AttributeNotDefined, const char * theName,
InvalidSpaceHandle, const char * theTag) = 0;
RTIinternalError);

}; virtual void

discoverInteractionClass(

void InteractionClassHandle theParent,

changeInteractionRoutingSpace ( const char * theName,
InteractionHandle theObject, const char * theTag) = 0;
SpaceHandle theSpace)

throw ( virtual void

InteractionClassNotDefined,
InteractionClassNotPublished,
InvalidSpaceHandle,
RTIinternalError);

void
createRoutingSpace (
const char * theName,

discoverParameter (
InteractionClassHandle theClass,
const char * theName,
const char * theTag) = 0;
}i

// Routing space modifications
virtual void

const char * dimensionsName[]) notifyAttributeRoutingSpaceModification(

throw ( ObjectHandle theObject,
SpaceAlreadyDefined, const AttributeHandleSeté& theAttributes,
FederateNotExecutionMember, SpaceHandle theSpace) = 0;

RTIinternalError);
virtual void
notifyInteractionRoutingSpaceModification (
InteractionHandle theObject,
SpaceHandle theSpace) = 0;

Federate ambassador API extension

class FederateAmbassador
{ virtual void
discoverRoutingSpace (
const char * theName,
virtual void const char * dimensionsName[]) = 0;
discoverObjectClass(



