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Université de Brest,
UMR CNRS 6285, Lab-STICC, CID, IHSEV,

Computer Science Department,
20 avenue Le Gorgeu, 29200 Brest, France

Abstract. Below the influence of the mechanical cues and genetic ex-
pression, constraints underlying the developmental process play a key
role in forms emergence. Theses constraints lead to cells differentiation
and sometimes pinpoint the directions of cells growth. To better un-
derstand these phenomena, we present in this paper our work focused
primarily on a development of a mathematical model taking into account
the co-evolution of cellular dynamics with it’s environment. To study the
influence of the developmental constraints, we have developed algorithms
to make and explore a base of genomes in order to check conditions under
which specific genes are activated and some patterns emerge to achieve
a specific shape. From our model, we found a genome that can generate
the French flag. With this French flag pattern and its genome starting,
we addressed the following question : is there another genome in the sim-
ulated base that achieves the same shape, i.e. the French flag pattern ?
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1 INTRODUCTION

1.1 MORPHOGENESIS : EMERGING of INTERESTS

Biomedical science has undergone a remarkable evolution during this last decade.
Advances and innovations in biotechnology, more particularly in microscopy and
imaging, have provided a large amount of data at all level of biological organiza-
tion. In 2007, Melani and al. achieved a tracking of cell nuclei and the identifi-
cation of cell divisions in live zebra fish embryos using 3D+time images acquired
by confocal laser scanning microscopy [11]. These kind of data allowed new
description in details of many components and structures of living organisms.
Observations noticed from these data like geometrical segmentations during cells
proliferation have raised relevant issues in mathematical and numerical point of
view. But experimental complexity usually restricts observations to a single or



very restricted spatial or temporal scales. So, one of the purposes of mathemati-
cal and computational models in biology is to reconstruct from this large amount
of data, gathered at different scales, integrated models that take into account the
dynamic interactions between different levels of the biological organization. In
cells proliferation models, it means to consider the cell as a place of integration
of causalities and downgrades.
For this purpose, tensegrity model consider biomechanical forces between cells
and the extracellular matrix. The stretching of cells adhering to the extracel-
lular matrix may result from local reshuffle in this latter. According to this
model, growth-generated strains and pressures in developing tissues regulate
morphogenesis throughout development [8]. It is therefore the biomechanical
forces which play a key role in this model of morphogenesis. For example by
modulating cell differentiation, influencing the direction of division or deforming
tissues. However, the question of cell diversity even arises before the acquisi-
tion of shape [13]. Indeed, when the embryo has only a few pairs of cells, we
can already see a diversification of biochemical content or a diversification of
embryonic cells morphology. That may be the result of genetic and molecular
interactions. Indeed, the emergence of forms also stems from the acquisition of
differential properties, of cell mobility and gene expression throughout cell de-
velopment.
Moreover, Artificial Regulatory Networks also allow modelling morphogenesis.
They define a series of regulatory genes and structural genes. The firsts consist
of a network of rules determining the evolution of the system and the latter are
intended to each generate a simple specific pattern. They can be seen as a dy-
namic system following different trajectories in a state space [9]. However, even
if the detailed knowledge of genomic sequences allow to determine where and
when different genes are expressed in the embryo, it is insufficient to understand
how the organism emerge [12].

1.2 BELOW GENETIC EXPRESSION

So, we have looked forward to learn more about the emergent properties of cells
organization and especially the importance of cellular dynamics in the emergence
and evolution of shapes, both in mathematical and numerical point of view.
A Multicellular organism is a complex system which can be defined as a com-
position of a significant number of elements interacting locally to produce a
global behaviour. Complex systems are also characterized by a high capacity of
self-adaptation and self-organization, such as multicellular organisms are. They
can evolve and learn through feedbacks between their external environment and
their internal architecture. And according to Doursat [4], whether inanimate
structures or living organisms, all processes of form emergence are instances of
decentralized morphological self-organization. When cells evolve, they modify
their organism which in its turn impacts their behaviour. This is what biologists
mean by co-evolution. Epigenetics considers that this coupling between organism
and environment can not be ignored in understanding the development of living
organisms [15].



In mathematics, the viability theory [1] offers concepts and methods to control a
dynamical system in a given fixed environment, in order to maintain it in a set
of constraints of viability. Applied to morphogenesis, this means that we should
have at least one co-viable evolution of the cells state and their environment
based on each state-environment pair. This formalization allows us to establish
feedback rules in terms of direction growth changing and cells differentiation.
This mathematical model was formalized in [6]. So in our computational model,
every cell has its own rules monitored by a set of controls and stay aware of
its neighbourhood. This ensures cells to be autonomous while knowing when
the dynamic stops being viable and consequently when to implement feedback
mechanisms. The integration of the behaviours of each component of the system
allows to determine its global state in a finite time.
In this paper, we are going first to present our morphogenesis simulation tool
(Sect. 2). Then, to better study and understand the influence of shape emer-
gence on cellular dynamics, we present here original algorithms based on the
mathematical model to explore and simulate a base formed by all possible
genomes from a same set of genes. The aim of this exploration is to verify the
conditions under which certain genes are activated and especially if these condi-
tions are unique for a targeted form (Sect. 3). We test the algorithms on our
morphogenesis simulation tool with the French flag as being the form to reach
(Sect. 4). Finally, we conclude before highlighting some relevant applications
and future prospects we could give to them (Sect. 5).

2 SIMULATION TOOL

In this section, we describe Dyncell which is a tool developed for simulating
generative systems [5]. The platform was created to experiment our theoretical
model of morphogenesis.
The program is implemented in C++ using a tool kit of Virtual Reality : ARéVi
[14, 3]. ARéVi is a simulation library of autonomous entities with a 3D rendering
developed at European Center of Virtual Reality (Brest, France).

2.1 ARCHITECTURE

The architecture of our simulation tool is based on the concept of shape. All
classes inherit from a generic parent class called Form. During simulation, each
instantiated object is a form by definition.
This class has two main subclasses: Environment and Cell, which are the two
types of objects to be instantiated before starting any simulation.
Running a simulation always consists of instantiating an object Environment

and some Cells objects evolving in this environment.
Class Cell is responsible for representing cells. Then, an object Cell is defined by
its age, color, division speed and energy amount. During mitosis, another Cell

object is created next to the mother Cell object that triggered the division
according to a route choice as defined in the mathematical model.
Environment is a Form object which has a lifetime. It is used to delimit the space
in which cells population operates or to exert external forces on them.



2.2 FEATURES

The order of scheduling has a significant impact on the results of the simulation
[10, 2]. It determines how local interactions (self-organization) have been held,
consequently how and when the system reaches the final shape. Different be-
haviours can be observed in virtual models depending on the scheduling mode.
When modelling natural systems, asynchronism seems more appropriate. In mor-
phogenesis, for instance, synchrony is likely to cause false correlations between
cells. In ARéVi, scheduling of agents is handled implicitly in asynchronous and
stochastic way. Routines of each agents are executed sequentially and entirely,
the same number of times. However the running order of agents is randomly
determined.
We set as a basic principle that cells are autonomous agents and ignorant of the
whole system even if they can perceive their environment and adapt appropri-
ately. They are represented on screen by spheres and can proliferate in a discrete
environment (cellular automaton) or in a “continuous” one. In the latter case,
the movement of cells is more precisely described and we can have more complex
interactions.
A graphical interface has been implemented in order to set the options of the
simulation. It allows dynamic change of parameters and selecting mechanisms
(e.g. apoptosis) that will be active/inactive during the simulation. Options are
available to allow choice between 2D/3D, discrete or continuous simulations. The
size and shape of both the environment and the cells can also be defined and
adjusted.
Spatial constraints are crucial for evolution of the cells. If they are too heavy,
the cell is not viable as it can no longer divide. A maximal constraint parameter
sets up a threshold below which the cell can remain viable.
To account for the influence of the environment, a parameter is defined as the
maximum number of cells that a cell is able to push when it divides. When the
current strain of the cell is greater than the maximum stress threshold, the cell
can no longer divide. To stay alive, a cell can undertake two modes of mitosis
which are feedback mechanisms to face this kind of constraints. Firstly, the cell
chooses to divide in the direction where the stress is less intense; secondly where
the direction of cell division is predetermined.
It is also possible to assign an amount of energy to each cell. The basic idea
is to consider that a cell has a store of energy assimilate from its environment.
A percentage of the store is used to maintain structure and growth. And the
remaining part is used for maturation and reproduction. The cell dies when the
energy level becomes too low.

3 ALGORITHMS

At the initial stage of a living organisms creation, all cells have the same genome.
But during the developmental process, they don’t all express the same genes.
Why the dynamics of these cells have changed to bring about a differentiation ?
What are the factors that come into play ? What is the mechanism by which
this takes place ?



These are the questions that underlie any understanding of collective self-organi-
zation and self-adaptation mechanisms that target then achieve the well-guided
form of living organisms. To address them, it will be important to consider the
influence of the developmental process on the overall shape and the underlying
constraints that it imposes locally to the cells. The idea of the algorithms we
have developed to study this influence is greatly inspired by the concept that
Waddington introduced in 1940 as the epigenetic landscape [16]. All possible
paths through this landscape (whose barriers are similar to the constraints of
the form) represent the possible forms from the same genome, but subject to
different conditions in which only some specific genes are activated (see Fig. 1).
Therefore, the identification of the obstacles across the landscape allows to know
where and when feedback mechanisms are involved (i.e differentiation that gives
a particular character to the form at this time).
To study the effect of the developmental process constraints, we verify the condi-
tions under which feedback mechanisms are triggered. To do so, we have gener-
ated a base of genomes formed from the same set of genes. Having a genome that
achieves a given shape, we aim to explore the entire space of possible genomes
to see if we can find another genome which allows to reach it.
In this paper we have chosen to target the well known French flag. That means we
seek a genome, when simulated, will give a form whose development constraints
will lead :

– to the activation of the same genes as the French flag (same colors),
– to the choice of same segmentation directions as the French flag (same

shape).

Fig. 1. In 1957, Conrad Waddington proposed the concept of an epigenetic landscape
to represent the process of cellular decision-making during development. At various
points in this dynamic visual metaphor, the cell (represented by a ball) can take specific
permitted trajectories, leading to different outcomes or cell fates [7].

In Waddington’s point of view, that implies that from two different origins on
the top of the epigenetic landscape, the ball can go through different trajectories
but encounter the same obstacles and finally hit the same endpoint.

3.1 SOFTWARE ARCHITECTURE

In our software architecture, we have two main classes which handle exploration
and simulation activities.



1. Genome : represents a genome and allow us to manage all treatments that
can be performed on a genome. As we designed it, a genome is composed of
one or more genes that are activated or not during the simulation.

2. GenerateGenome : includes all the activities of exploration, initialization,
launching and stop. It carries initialization method of the exploration param-
eters, start and stop genome simulation methods, methods allowing treat-
ment of genomes, methods for managing a set of genomes, methods for
recording exploration results.

3.2 GENOMES BASE CONSTRUCT

Genes are defined in an xml file with all their attributes (color coded, route
choice applied, number of repetitions in the genome . . . ). From this file, they are
loaded into a vector from which we create all possible combinations of genomes
based on the characteristics of the French flag genome. These characteristics are:

1. its genome is composed of 4 genes

2. the 1st gene in the genome is the same as the 4th gene

3. if n is the number of times which is repeated the 1st gene in the genome
(called multiplicity of the gene), the 2nd gene has therefore a multiplicity of
2xn and n for the 3rd and 4th genes.

Thus, all genomes are constructed in the same way (see Table 1).

Table 1. French Flag Genome Characteristics

Genes Gene 1 Gene 2 Gene 3 Gene 1

Multiplicity n 2xn n n

3.3 INITIALIZATION

During initialization, we define the match criteria to be achieved by simulated
genomes in the base. When simulating French flag genome, we chose 3 as the
first gene order of multiplicity. We note that the multiplicity doesn’t affect the
shape but just its size. The bigger it is, the larger is the shape. And 3 is an
optimal value for an exploration of such a large base.
In Table 2, we have some informations from different simulations performed
with French flag genome. For a given multiplicity of the French flag genome
(row 1), we have the values of the criteria recorded during the simulation. The
number of cells that make it up (row 2) and the age at which it reaches its
final form (row 3). The current time is determined during the simulation by the
scheduler and is expressed as a double.
So, during the exploration, to assess that a given genome has achieved the French
flag, we mainly refer to these values of these criteria.



Table 2. French Flag Genome Simulation Results

Multiplicity Number of Cells Age

3 70 1.16
4 117 1.224
5 176 1.288
6 247 1.352

3.4 DESCRIPTION of the ALGORITHM

The goal of the algorithm is to explore all genomes. Each one is simulated in
order to check if it is able to reach the French flag. In other terms, if it is possible
to achieves the same number of cells as the French flag in an identical time on a
genome constructed in the same way as the French flag ’s one but with different
parameters. If a such genome is found, the algorithm lists it as well as the order
of multiplicity with which it has converged.

Fig. 2. The Algorithm’s flowchart

Apart from a match, there may be two cases (see Fig. 2) :

1. the number of cells exceeds that corresponding to the current choice of multi-
plicity. So we definitely assume that we can’t reach the French flag with this
genome. In this case, the algorithm continues exploring and pick its follower
in the base.

2. the number of cells doesn’t reach that of the current choice of multiplicity. So
we will check the correspondence of the same genome led to a higher order
of multiplicity (i.e from 3 to 4). The algorithm then reload the same genome



by changing the settings of these genes multiplicity. In the 2nd simulation
of the genome, if the number of cells corresponding to this new choice of
multiplicity is met, then it is listed. Else, if the number of cells exceeds, we
execute the same treatment as in (1). Else if during this second simulation
of the genome, the corresponding number of cells is still not reached, back to
(2) : increase multiplicity from 4 to 5 in the 3rd simulation of the genome.

While the number of cells keeps being lower than that expected, we redefine genes
parameters of multiplicity in the genome a maximum number of times allowed.
In the algorithm, it is 3 times. So the last choice of multiplicity is 6 with an
expected number of cell 247 in 1.352 time units. In this step, the genome is no
longer reloaded, considered definitely not able to achieve the French flag. Then,
the algorithm continues exploring and pick its follower in the base.
When the algorithm has finished simulating all genomes, the program stops and
we retrieve the results in an output file.

4 EVALUATION

4.1 TEST CONDITIONS

In the tests we have achieved, the targeted form was, as shown in Fig. 3, the
French flag introduced by L. Wolpert in 1969 [17].

Fig. 3. Form targeted by genomes in the base

The genome which allows to generate the French flag is as follows (details in
Table 3) : [1 2 3 1].

Table 3. Informations carried by the French flag genome

Genes Colour coded direction indicated in the route choice

1 Blue Right
2 White Forward
3 Red Left



For the 64 genes we have, we obtained 262,114 possible combinations of genomes,
making the exploration space pretty huge. Indeed, for the simulation of the en-
tire base, it took 5 days. Simulations were done on a computer with the following
characteristics :

– System : Linux 32 bits

– Processor : Intel Core 2 CPU 6300 1.86GHz x 2

– RAM : 2 Go

– GPU : ATI Readon X1300/X1550 Series (256MB)

4.2 OUTPUT RESULTS

5 genomes were identified as generating forms with characteristics identical to
those of the French flag (see Fig. 4) : [1 2 4 1]-[1 4 2 1]-[3 2 1 3]-[4 1 2
4]-[4 3 2 4].
They have all achieved it with the first order of multiplicity (i.e. 3). Consequently,
they are each composed of 70 cells with a maturation age of 1.16 time units
(Ref. Table 2).

Fig. 4. Forms identified by the algorithm that have met matching criteria of the French
flag

We note that among these 5 forms retained, there are only 2 of which exactly
the three genes of the French flag are activated : [4 3 2 4]-[3 2 1 3]. And only
1 of these 2 is same as French flag : [3 2 1 3].
So, from two different genomes, we have reached the same form.
Two generated forms discarded by the algorithm are presented in Fig. 5 and 6.
The first one present the case where removal is due to the fact that the algorithm
has reloaded the 3 times authorized the same genome [1 1 3 1] without getting
result. Based on the output result of the simulation, we can point out that for
these 3 times, the number of cells remain 13. Then, the algorithm continues to
the follower genome.



Fig. 5. Example of a discarded form after three attempts of reaching the French flag

The second one present the case where removal is due to the exceed number of
cells in the generating form relative to that of the sought form with regard to
the defined multiplicity order. Here too, output results show that the algorithm
aborts the simulation of the genome [3 2 12 3] and proceeds to the next one in
the base.

Fig. 6. Example of a discarded form with a number of cells exceeded that targeted

5 CONCLUSION

Inspired by the concept of epigenetic landscape, we have shown the importance of
the developmental process constraints on the final form. Starting from 2 different
genomes, we have achieved the same form thanks to the choice of feedback
mechanisms to deal with stress throughout development. Theses mechanisms
are, in the one hand, cellular differentiation which allows the activated gene to
encode the colors of the form. In the other hand, they imply successive changes
of direction that allow to generate (to design) the shape as it goes along.



5.1 RELEVANCE to BIOLOGICAL ISSUES

The model is tested in French flag pattern because it is a widely known issue in
studying the factors that put into play in cell differentiation. It constitutes the
first steps towards the comprehension of biological mechanisms. Nevertheless, in
future works, it might be also possible to test the model in real case. For exam-
ple, in genetics, single nucleotide polymorphism (SNP) is the variation of a single
base pair of the genome between individuals of same species. They are used for
recognition of individuals or reconstruction of family trees. In our algorithm, we
could build the genome base so that they are all identical except the last gene in
each of them. This gene, different from one genome to another, will constitute
our SNP. And then we can explore this base to study the influence of this small
genome variation by comparing their generated forms.
We can also consider applying the algorithm to look for genomes that can gen-
erate more complex forms. Indeed, from the cell lineage of an organism, we
can know its number of cells and its different cell types. We can take the case of
Caenorhabditis Elegans (C. Elegans). This is an eukaryote1, which means that it
shares cell structures, molecular structures and control channels with organisms
of higher species. Thus, its biological information (embryogenesis, morphogene-
sis, growth, etc.) could be directly applicable to more complex organisms, such
as humans. In addition, it has a fixed number of cells. The adult hermaphrodite
is composed of 959 somatic nuclei and the adult male of 1031 while the young
consists of 1090. The algorithm can be used to search in the base a genome which
can generate a form with the same number of activated genes than cellular types
in C. Elegans and having an identical number of cells.

5.2 FUTURE WORKS

To consider the description of all forms of dynamics, we plan to study a gener-
alization of our mathematical model. In the current model, when a cell initiates
mitosis, we just create next to it another one. The mother cell does not imple-
ment any other mechanism. Therefore, we will consider a mathematical model
where the mother cell can in each time step:

– remain quiescent as it is in the current model,
– migrate to another point or,
– die.

This formalization will allow to reach all possible forms. The development of a
such model raises new challenges in mathematical and numerical perspectives.
Because describing all possible dynamics for each cell at each time step offers
many options to consider. In computing, parallel programming on GPU2 could
overcome scalability and duration of simulations.
1 A eukaryote is an organism whose cells contain complex structures enclosed within

membranes.
2 Graphics Processing Unit
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13. N. Peyriéras. Morphogénèse : L’origine des formes, chapter Morphogenèse animale,
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