

Thao Thu My Truong^{1,2}, Vincent Rodin¹, Bernard Pottier¹

¹LabSTICC, Université de Bretagne Occidentale, Brest, France ²Vinh Long University of Technology Education, Vinh Long, Vietnam

CONTEXT

to understand climate change effects: and evolving insect swarms... environment: level, weather patterns, ecosystems.

Fig 1. Harmful Algal Blooms (HABs) [4] are bound to change of temperature and water, producing toxic or harmful effects on people, fish, shellfish, marine mammals, and

Brown

insect

field in

Fig 3. India floodings: 1.000.000 people displaced, and deaths >400 reported

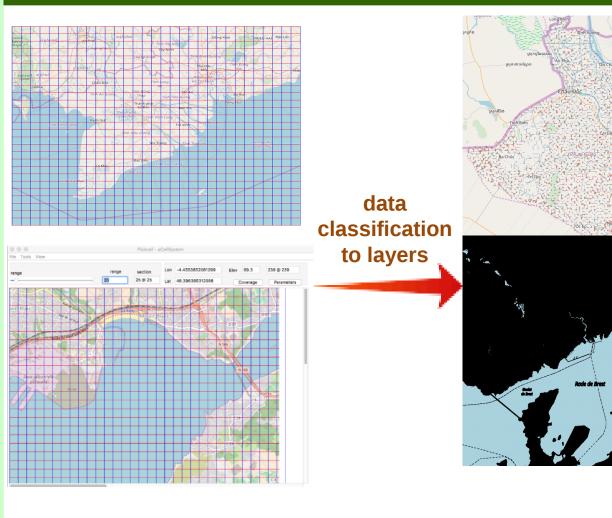
Fig 4. California has 149 million dead trees in 2018

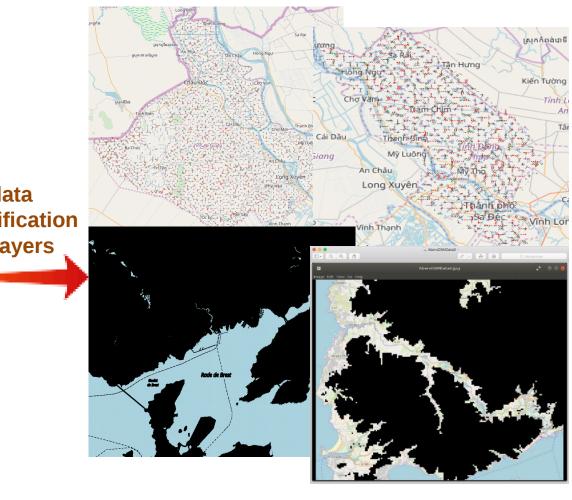
Methods:

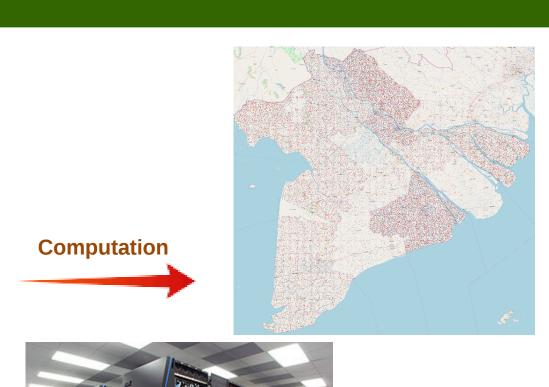
changes and mitigate To monitor consequences together using sensor networks, aerial pictures, physical modeling and computer simulation.

- Test applications are needed such as Harmful Algal Blooms monitoring.
- Measure from sensor fields, simulate with cellular systems [1], and adjust theoretical model behaviour.
- Elaborate prediction software.

Global reported natural disasters by type The annual reported number of natural disasters, categorised by type. To Volcanic activity Landslide Extreme temperature


Fig 5. Global reported natural disasters in 1970-2018


Problems:


- Characterization of "complex terrains": mountains, hills, rivers, shores are disrupting behaviour. Other parameters too: population density, soil composition, people activity.

- Modeling large areas will induce partitioning based on these characteristics.

DATA ANALYSIS

Step t+1

- The water quantity of each central cell

distributed to its neighbors at each time

- A minimization algorithm based principle

of a dynamic system has proposed to

Fig 7. Water flow moved on cell system based

on trasition rule during a rain episode (showed

by sending water quantity North Cell to Center

Cell, and Center Cell to the West, East, and

North

East

minimize the height margin of cells [6].

West

Step t

Fig 6. Initial cell system at step t, center is partition data, based on parameters: region, map color, elevation... processed step by step with a management of margin dependencies.

Transition Rules:

step based on Equation 1, 2.

Cellular automata example: rain

Data space is divided into tiles, zone character, elevation,... processed step independently, with a management of margin dependencies.

$$T_{i} = \frac{nD_{i}}{\sqrt[3]{h_{0}^{2}}\sqrt{(H_{i} - H_{0})/D_{i}}}$$

$$f_i = \left\{ egin{array}{ll} (avg - H_i) rac{t}{T_i}, & t < T_i \ (avg - H_i), & t >= T_i \end{array}
ight.$$

Eq 1. Propagation time (T_i) and water quantity from central cell to its neighbors (f_i)

- n: Manning's coefficient
- h_o: The water depth in central cell
- H_i: Neighbor heights
- H_o: Height of central cell
- D_i: Distance from central cell to each flowing neighbor.
- t: time step

South Cell) avg: the sum of water quantity of cells divide count of its neighbor

SYSTEM MODEL

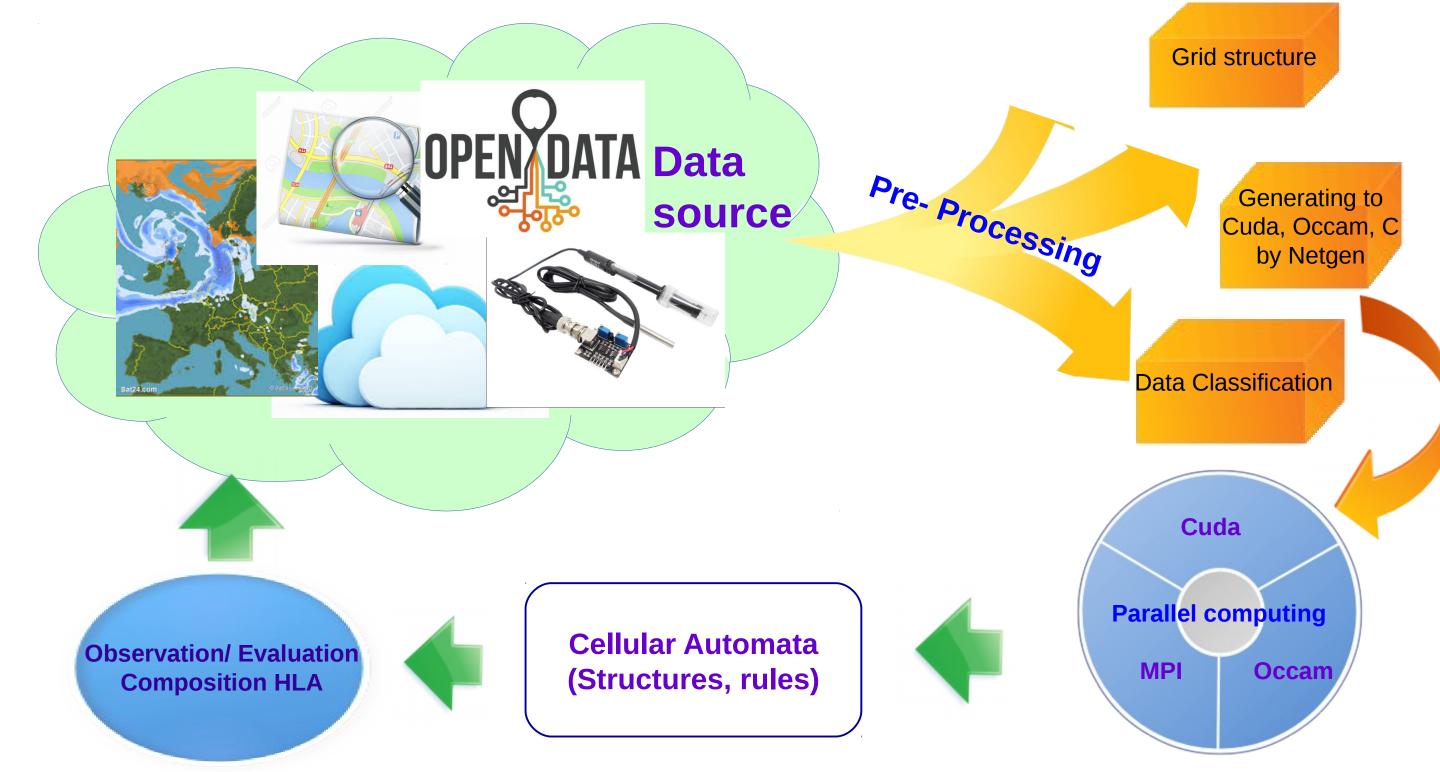


Fig 8. Workflow for simulation system

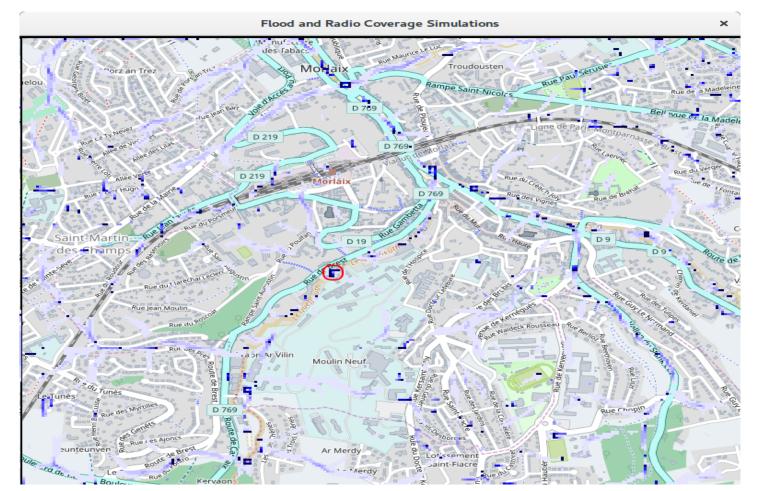
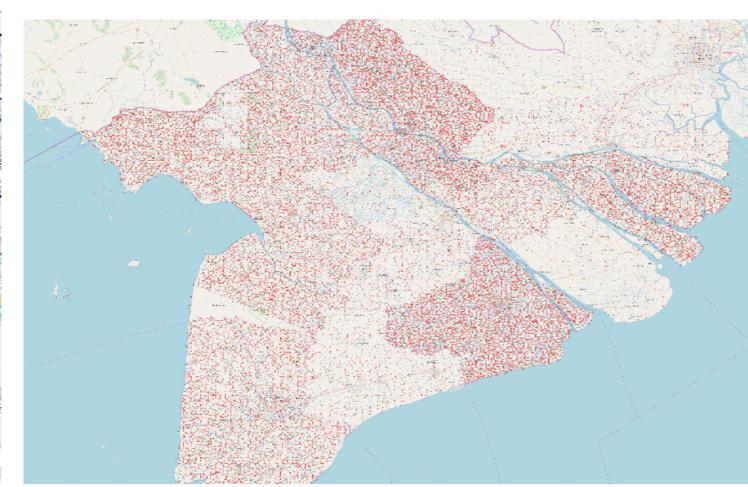



Fig 9. Morlaix (France) Simulation (58275 cells, 3 x 3 km, rainfall: 60cm) by GPUs with thousands of CUDA cores.

Mekong (Vietnam) Simulation (23.592.960 cells, 76 x 76 m, rainfall: 100cm) by CPU (MPI) with clusters.

		Execution time			
Resolution (pixels)	Number of cells	820M	GTX 680	GTX 1070	
3x3	58725	28.168 (ms)	6.5269 (ms)	1.3373 (ms)	
5x5	21060	10.411 (ms)	2.1728 (ms)	518.64 (μs)	
10x10	5226	2.5234 (ms)	454.59 (μs)	83.696 (µs)	
15x15	2340	1.1155 (ms)	181.48 (μs)	65.916 (μs)	
20x20	1287	602.47 (µs)	171.19 (µs)	62.085 (µs)	

Tab 1. Execution times for flood simulations Tab 2. Execution times for flood simulations Cuda [2].

Number of cells	Resolution	m/cell	10 110013		2411003	
			Normal	MPI	Normal	MPI
768.432	1024x768	76	9.431s	9.029s	18.284s	19.716s
3.145.728	2048x1536	76	12.150s	30.230s	24.245s	1m
23.592.960	5120x4608	76	7m21s	5m7s	17m9	11m30

which are performed on Linux Ubuntu PCs with which are performed on Linux Ubuntu PCs with MPI evaluation on 3 nodes.

CHALLENGES/PERSPECTIVES

- Multiple targets computation solution: CPU, GPU, MPI.
- Real world applications.
- Parallel load distribution related to data complexity/requirements.
- Data diversity and Open Data [5] access from cells.
- Integrating of remote detection and ground sensor.
- Modeling of fluid dynamics and computing methods for Biosystems applied to water management and monitoring in system model.

ACKNOWLEDGEMENTS

This work is developed as a contribution to the Nano satellite MICAS project involving people from Lab-STICC, UMR 6285, IUEM, UMR 6358, Can Tho university from Mekong Delta, Vietnam. MICAS is funded by Region Bretagne.

REFERENCES

- [1] Stephen Wolfram, Cellular automata as models of complexity, Nature 311, 1984, p. 419.
- [2] Truong TP, Pottier B, Huynh HX, Cellular Simulation for Distributed Sensing over Complex Terrains. Sensors, 2018, 18(7):2323.
- [3] B. H. Lam, Ph.D. thesis, Sensors and wireless networks for monitoring climate and biology in a tropical region of intensive agriculture methods, tools and applications to the case of the Mekong Delta of Vietnam, Brest university (UBO), Brest, 2018.
- [4] Mouhamed Ndong, David Bird, Tri Nguyen-Quang, Marie-Laure De Boutray, Arash Zamyadi, et al, Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: Application to drinking water production, Water Research, IWA Publishing, 2014, 56, pp.98-108.
- [5] Guoqing Li, Jing Zhao, Virginia Murray, Carol Song, and Lianchong Zhang, *Gap analysis on open* data interconnectivity for disaster risk research, Geo-spatial Information Science, 2019, p.45-58.
- [6] Di Gregorio, Salvatore and Serra, Roberto, An Empirical Method for Modelling and Simulating Some Complex Macroscopic Phenomena by Cellular Automata, Future Generation Computer Systems, 1999, pp. 259-271.