

Multi Objective Optimization Course Split dec 2021

Laurent Lemarchand
Lab-STICC/UBO
Laurent.Lemarchand@univ-brest.fr

http://labsticc.univ-brest.fr/~lemarch/ENG/Cours

outline

- Introduction to combinatorial optimization 30min
- Heuristic and Evolutionary Algorithms 30min
- Multiple Objective Optimization 1h

Lab: Planning a ROV mission 2h

Introduction to discrete optimization

Laurent Lemarchand
Lab-STICC/UBO
Laurent.Lemarchand@univ-brest.fr

Discrete optimization

Many choices

Not obvious ... many aspects to take into consideration ...

Problem: How to find the best **solution** according to some **criteria**?

You can enumerate all of them (discrete problem)

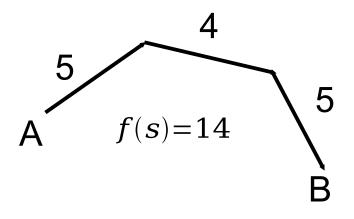
Combinatorial optimization introduction

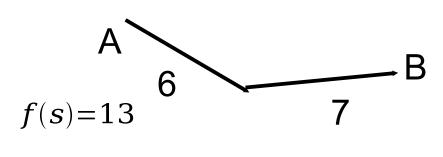
- Optimization problem: find the best solution to a given problem among a set of feasible ones, according to some optimization criteria
 - S : solution space
 - f(S): function (objective function) for evaluation solution quality – can be maximized or miinimized

Oops, a single place!

Combinatorial optimization examples

- Path finding: shortest path within a graph between couples of nodes
 - S : all possible paths
 - f(S): path length (to minimize!)



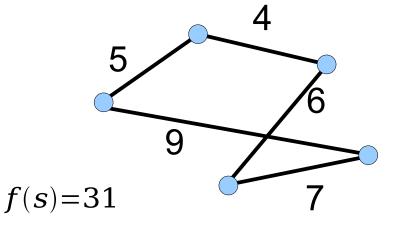


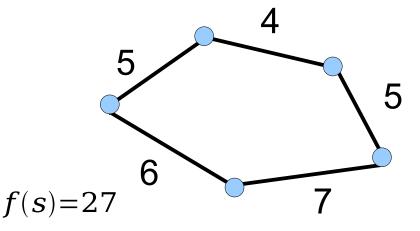
Graph optimization

Combinatorial optimization examples

- Travelling salesman problem : visit every town a single time and come back to the starting point
 - S: all possible roundtrips (tours)
 - f(S) : roundtrip length (to minimize!)

V Rodin et. all





Combinatorial optimization examples

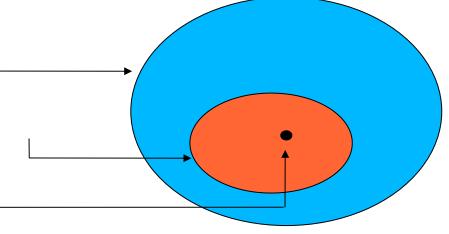
- A carpenter can make at most 6 seats and 3 tables by day (8 hours of work)
 - He sells a table \$90 (working 1h15)
 - A seat, \$50 (working 45mn)
- How to maximize his benefit ?

$$\begin{vmatrix}
90t & + & 50c & = & f(s) \\
75t & + & 45c & \leq & 480 \\
0 & \leq & t & \leq & 3 \\
0 & \leq & c & \leq & 6
\end{vmatrix}$$

Linear programming: simplex method with O(2ⁿ) complexity₈

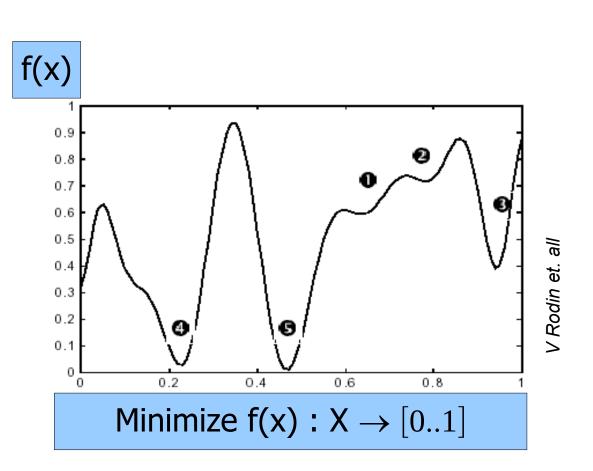
Combinatorial optimization framework

- Solution space S ⊆ X
- Objective function (e.g. min) $f: X \to \mathbb{R}$
- Find $s^* \in S$ s.t. $\forall s \in S$ $f(s^*) \leq f(s)$
- X , solution space
- S , feasible solution space
- s* , optimal solution



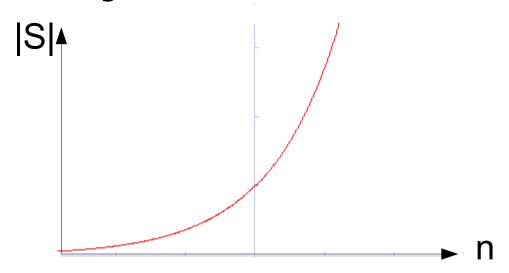
Combinatorial optimization local sub optimal solutions

- Can fall into a local minimum as 1, 2, 3, 4, 5 (5 is the best :-)
- Must explore the whole solution space
- Not only neighbourhood
- Example : minimize a continous function on a single variable

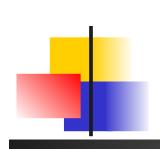


Combinatorial optimization combinatorial explosion

- Problem of the size of S related to the size of data
 - TSP (n-1)! / 2
 - Bi partitioning 2ⁿ
 - 0-1 Integer Programming 2ⁿ



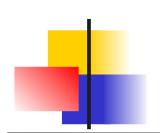
S size is exponential



Combinatorial optimization combinatorial explosion

Enumerate all solutions : often impossible

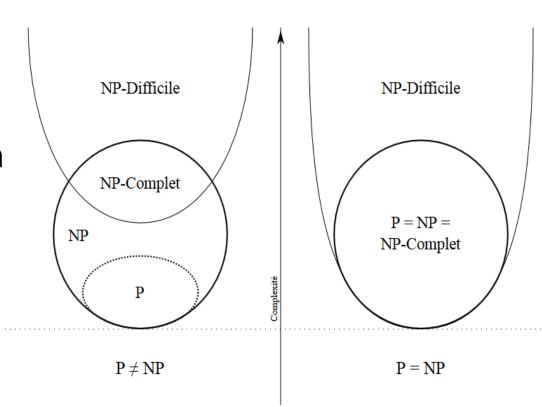
Complexity	N = 1	N = 10	N = 100	N = 1000	N = 10000
log~N	0 ms	1 ms	2 ms	3 ms	4 ms
N	1 ms	10 ms	0.1 s	1 s	10 s
N^2	1 ms	0.1 s	10 s	17 min	28 hours
N^3	1 ms	1 s	17 min	12 days	32 years
e^N	3 ms	22 s	9 10 ³² years!	Long time	Very long time



Classes of problems Complexity

decision problem p:

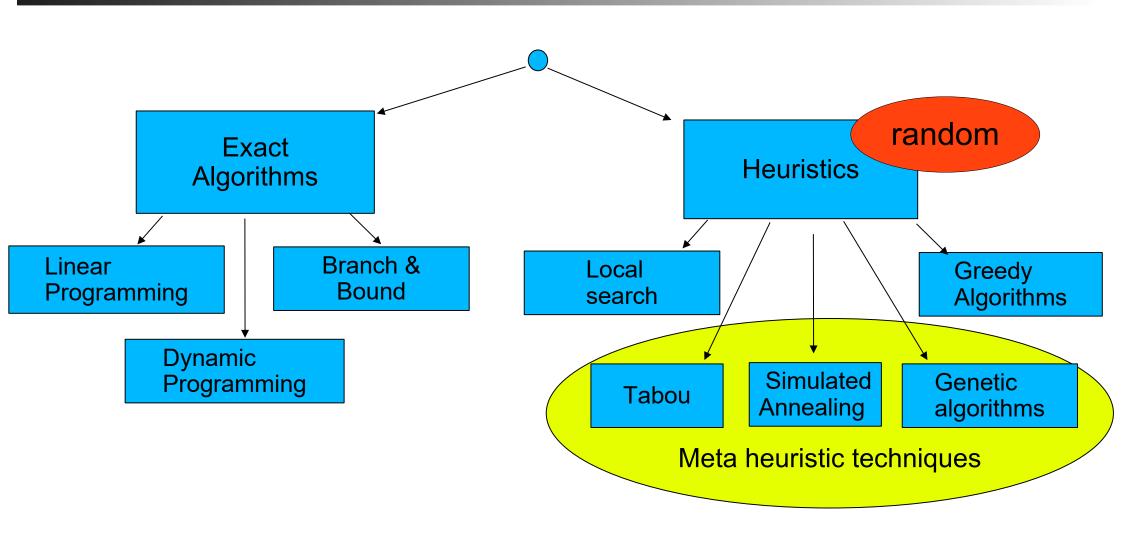
- p ∈ P class: polynomial algorithms for solving p in polynomial time
- p ∈ NP class: no known polynomial algorithm, but checking of solution in polynomial time. [Maybe P = NP]
- iff all problems in NP can be reduced p by a polynomial transformation
 - If p ∈ NP, p ∈ NP-complete class (→ hardest problems in NP)
 - If $p \notin NP$, $p \in NP$ -hard class



- LP ∈ P
- MILP ∈ NP-hard



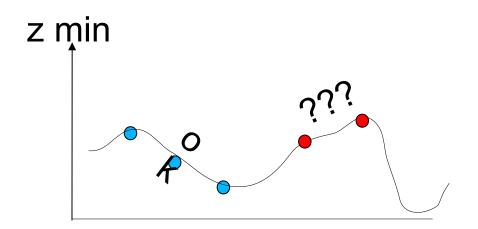
Combinatorial Optimisation search techniques

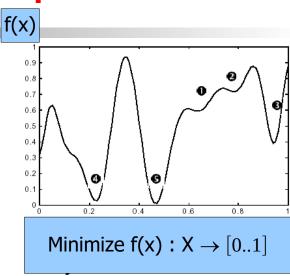


Combinatorial Optimisation local vs. global techniques

- Remember local minimum problem
- Choice between
 - Improve current solution
 - Exploring the whole search space

Trade off politics design





Combinatorial Optimisation exact vs. approximative techniques

- Practically speaking :
 - Don't always need the best solution
 - but have a good solution and eventually a guarantee on the quality loss
- If exact solution, exact method (sometimes impractical or too much time consuming)
- If appproximation
 - Heuristics (allowing discovery based on random mechanism)
 - Meta-heuristics (Frameworks for derivating specialized heuristics)

Large scale problems Heuristics useful

- Approximative result, but
 - Sometimes only available method (e.g program optimization)
 - Or exact methods for approximative model only (e.g circuit testing)
- Usefullness
 - Combinatorial explosion
 - Multiple or fuzzy objectives
 - Variability (robustness)
 - Fast runtimes more important than performance

Large scale problems Parallelism

- Too large problems or need for faster runtimes
- Availability of parallel computers (multicore, NOW)
- Possible parallelization
 - Search space partitioning: positive or negative anomalies favorables ou défavorables depending on search strategy and fitness function
 - Centralized or distributed implementation
 - Z update problem