

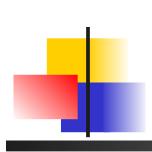
(meta) heuristic algorithms

Laurent Lemarchand Lab-STICC/UBO Laurent.Lemarchand@univ-brest.fr

Combinatorial Optimization Heuristic methods

Approximative result, while a part of random but

- Sometimes only available method (*e.g* program optimization)
- Or exact methods for approximative model only (*e.g* circuit testing)
- Usefullness
 - Combinatorial explosion
 - Multiple or fuzzy objectives
 - Variability (robustness)
 - Fast runtimes more important than performance



Combinatorial Optimization Greedy methods

- Greedy : build a solution step by step, they never come back on partial choices
 - Often far from optimality
- Very fast
 - Local search improvement possible
- Examples
 - Knapsack
 - Covering
 - Maximum stable
 - TSP

Greedy algorithms Knapsack

- knapsack : fill a knapsack of limited weight, choosing the most interesting objects within a list
- Linear program
- Order by profit $c_1 / a_1 \le c_2 / a_2 \dots \le c_n / a_n$
- let $x_1 = \min (\beta_1, b/a_1)$; $b = b a_1x_1$
- Iterate on x_2, x_3, \dots, x_n

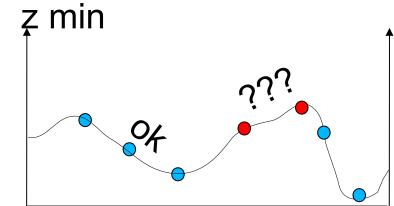
Greedy algorithms Covering

- Cover n elements by at least one object, each object has its own cost. Minimize total cost of chosen objects
- $\begin{array}{ll} \textbf{A}, \mbox{ covering matrix.} & \mbox{ What mean variables } \textbf{A}_i^j \\ A_i^j \geq 1 \\ \hline \textit{min } c_1 x_1 + c_2 x_2 + \ldots + c_m x_m \\ x_j \leq 1 \quad \mbox{ and } \quad x_j \in \mathbb{N} \end{array} \end{array}$
- Find k s.t $c_k/a_j = min_{j \in 1..n} c_j/a_j$ with $a_j = \sum_{i=1..m} A_i^j$
- Delete column k and rows such that $A_i^k = 1$
- Iterate on reduced problem

- Closest Neighbourgh algorithm
 - Random starting town
 - Go to next closest unvisited town
 - Loop from last to first town

Neighborhood methods (local search) principle

- Problem to face : go out local extrema
 - Random exploration, even costly
 - We have to focus on one solution (convergency)
- Single solution evolution
 - Descent method
 - Simulated annealing
 - Tabu search
- Or multiple solutions
 - Genetic algorithm
 - Ants



Local search neighborhood

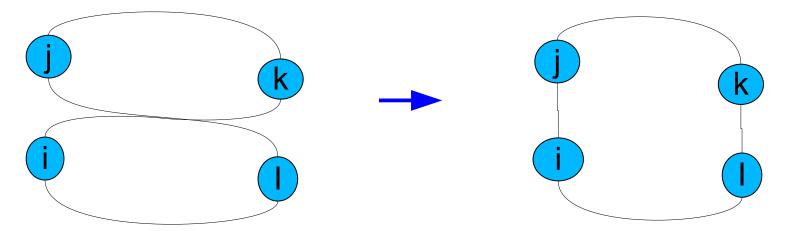
- Define a neighborhood function $V : S \rightarrow S^n$
 - Provide a set of n solutions similar (close to) $s \in S$
 - Explore these n solutions in order to find one that is better than s
- Sometimes non polynomial algorithm
- Optimality ?
- Ending criteria ?
- Alternatively, search from a set of seed solutions

Local search descent

- Objective function $min f : S \rightarrow \mathbb{R}$
- Local search method $V : S \rightarrow S^n$
 - Provide a set of n solutions similar (close to) s ∈ S

generate an initial solution s_0 $s = s_0$ **While** end not reached $s' = \min_{s \in V(s)} f(s)$ Local search TSP Problem

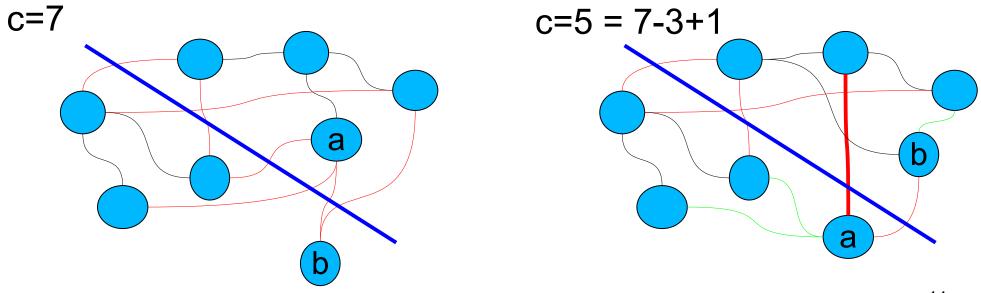
- Example : 2-opt for TSP local search(Lin, 1965, n(n 3)/2)
 - Neighborhood of n^2 tours T' = T U { $i \rightarrow k, j \rightarrow l$ } \ { $i \rightarrow j, k \rightarrow l$ }



3-opt possible, but very large neighborhood n(n – 3)(n - 2)

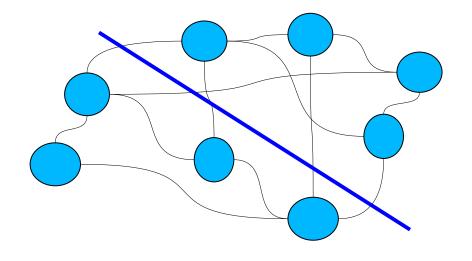
Local search 2-way Partitioning problem

- Graph G = (V, E) avec |X| = 2n find a partition X = V₁ U V₂
 t.q |V₁| = |V₂| = n which minimizes the number of edges crossing the 2 parts
 - Pairwise exchange neighborhood



2-way partitionning Kernighan-Lin heuristic

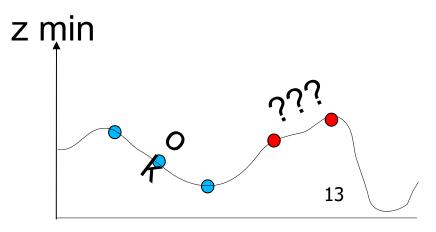
- At each step, choice the exchange maximizing the cut number gain
 - Constraint : a node can be swapped only one time
 - N/2 steps at most



Improving descent methods remarks

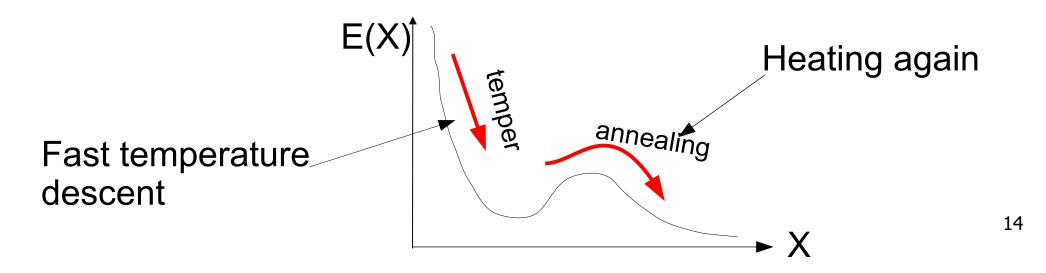
- Recall : trade off to be found between
 - Improving current solution
 - Performing an efficient search of all the search space

- Always the local extrema problem
- Tradeoff



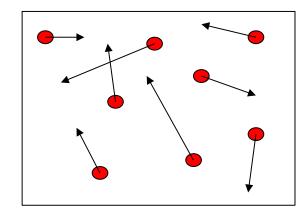
Meta heuristics simulated annealing (SA)

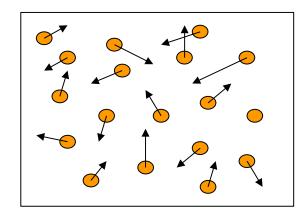
- Applicable to a lot of problems
 - Dynamic evolution of the tradeoff exploit./explor.
 - Based on crystal metal cooking model
- Evolution of energy levels within the metal

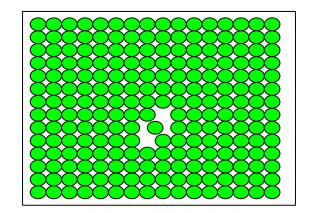


Simulated annealing analogy physics/optimization

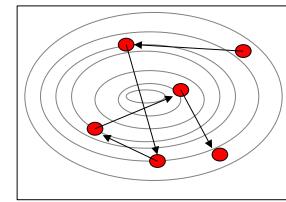
physics

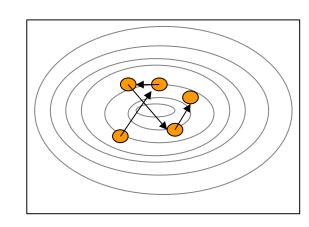


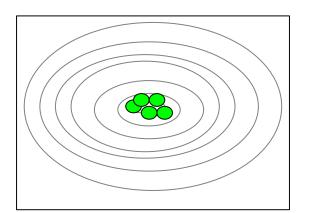




optimization







Simulated annealing principle

- First Explore randomly the search space
- Vary the degree of non determism (temperature)
 - Start high level : exploration, with a very random behavior
 - End low level : **exploitation** as with descent methods

Simulated annealing one step

- From current solution s_i, explore its neighborhood to obtain s_{i+1}
- If $f(s_{i+1}) f(s_i) < 0$, accept s_{i+1} (*minimisation*)
- Else, accept s_{i+1} based on probality :

$$p(s_{i} \rightarrow s_{i+1}) = e^{\frac{-(f(s_{i+i}) - f(s_{i}))}{T}} \\ \approx Gibbs-Bolzmann \\ distribution \\ 17$$

Simulated annealing algorithm

Space S, Evaluation f(s)(min), temperature(T) accept(Δf ,T) Initial temperature

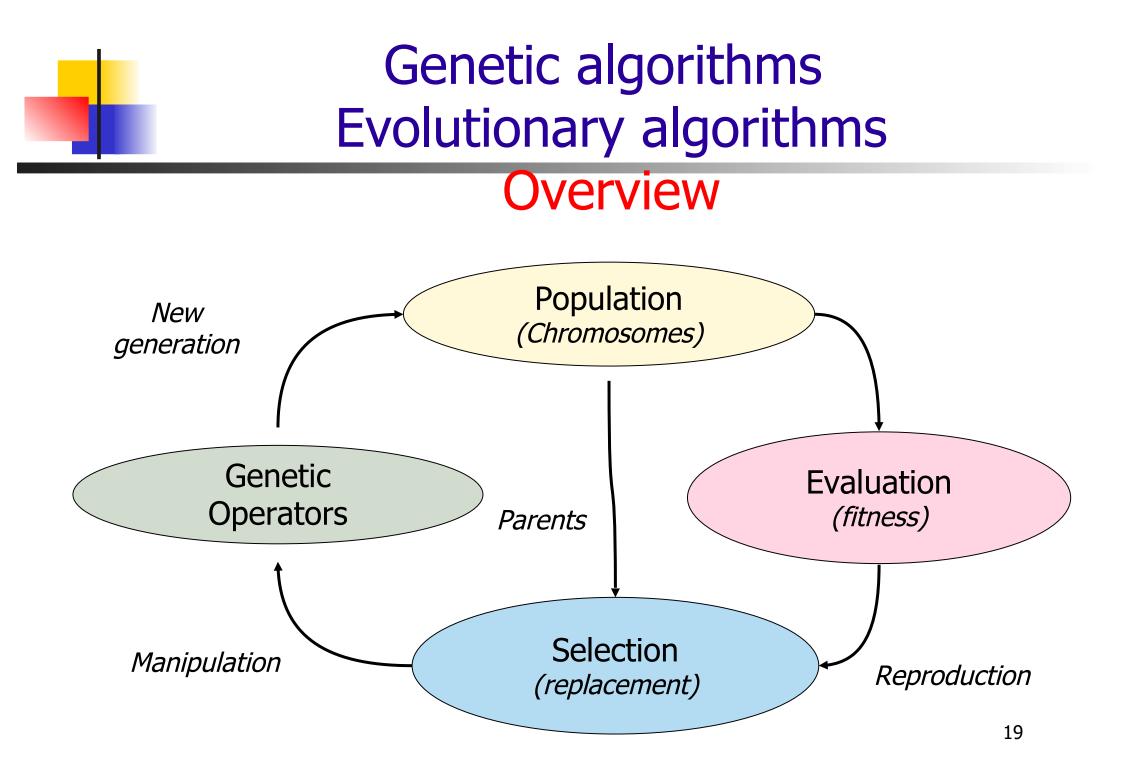
 $T = T_0$ Best solution

 $s = s_{best} = greedy()$

Algo SA while criteria1 do

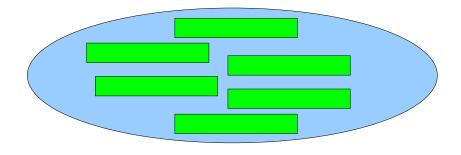
> while criteria2 do $s_2 = neighbor(s, S)$ $\Delta f = f(s_2) - f(s)$ if $f(s_2) < f(s_{best})$ $s_{best} = s_2$ if $\Delta f < 0$ or $accept(\Delta f, T)$ $s = s_2$ endw

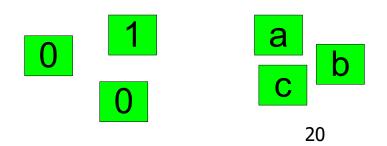
T = temperature(T) Endw End SA



Genetic algorithms Data

- Population
 - Set of individuals
- Individual
 - Encode a solution
 - Chromosome based representation
- Chromosomes
 - Allele based

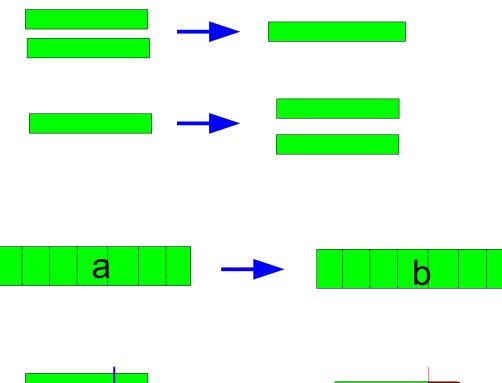




Genetic processing based on chromosomes

+

- Population
 - Reproduction
 - Duplication
- Individual
 - Mutation
 - Crossover



Genetic algorithms algorithm

Space S, Evaluation f(s)(*min*), crossover(P) mutation(P)

Mutation and crossover rates

Algo GA

generate initial population P in S **while** end not reached **do** reproduction(P) according to f() crossover(P) mutation(P)

endw

Best solution within population **end** GA

Genetic processing ramdom choices

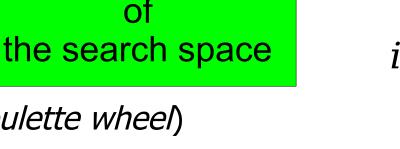
Exploitation

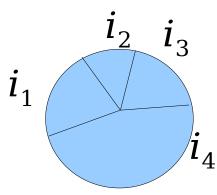
- Population
 - For reproduction (*roulette wheel*)

Chances to be selected proportional to fitness

- Operations
 - Mutation rate example: 0,5%
 - Crossing over
 % of population
 Random cutting sites

Exploration of the search space





Genetic algorithms implementation

- Empirical technique
- Lot of freedom for
 - Chromosome coding (*building blocks*)
 - Probabilities
 - Operators
 - Coupling witch others approaches
- Parallelism

Genetic algorithms parallelism

- Different alternatives
 - Master/slave oriented, fine-grain model (// based on individual evaluation)
 - + Local search applicable
 - Large grain approach (// based on the evolution of multiple independant populations)
 - Island model (with some individuals migrating from populations)

Genetic algorithms parallelism - example

- Benchmark TSPLIB http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html
 - 2D instances (euclidian distances)
 - Island model, 10 stations, ethernet 100Mb/s, MPI (// interprocs)
 - 1000 generations
 - 1000 individuals
 - Mutation 30%, (cross over ?)
 - Circular migration, 100 iterations, 20% of population.
 - I point Crossover, roulette whell selection

Genetic algorithms parallelism - example

Comparison of Parallel Metaheuristics for Solving the TSP M. Lazarova, P. Borovska CompSysTech'08

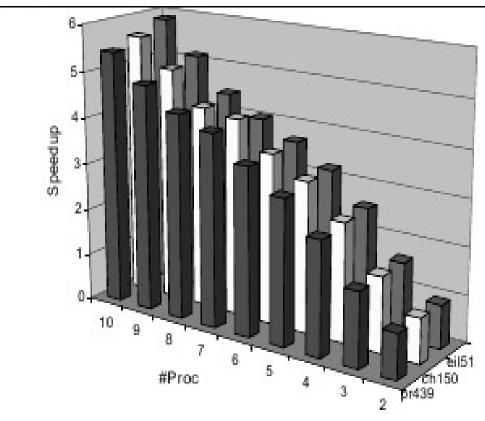


Fig.6. Speedup of parallel GA