

Introduction to
Multi-Objective Optimization

and its Applications

Laurent.Lemarchand@univ-brest.fr

Lab-STICC
labsticc.univ-brest.fr/~lemarch

mailto:Laurent.Lemarchand@univ-brest.fr

Introduction to MOO

Single vs (simultaneous) multiple objectives

 Many optimization methods (with
constraints and single or multiple
optimization objectives)

 A beam : section (weight) vs →
deformation

Y. Collette – Renault Technocentre

Deformation

1 meter

MOO

Solutions
(beams)

deformation

se
ct

io
n

Goal : find trade-offs
SOO ≠ MOO (Multiple Objective Optimization)

 Many objective fonctions

– antagonism

 No best solution

– set of solutions

 Y. Collette – Renault Technocentre

1 meter

Deformation

MOO

Solutions
(beams)

deformation

se
ct

io
n

Decision process
Our goal is not to choose/decide ...

Prior
knowledge

Decision
maker

Resolution
method

learning

preferences

results

 a priori search

– Priorizing bias (eg. Aggregation method)

 a posteriori search get whole set of solutions→
– Maybe difficult to analyze

 Interactive search

– ... helps the decision process

(solutions set)

MOO

Dominance
Our goal is to find good trade-offs

MOO

 How to compare solutions to each
other ?

 Solution a dominates solution b if

– a is as good as b for all of the
optimization criteria i :

 i, fi(a) f i(b)

– There is at least one criterium j
where a is better than b :

● j, fj(a) < fj(b)

f1 (min)

f2 (min)

c

a

b

Pareto front
V. Pareto (economist): in some cases, you can not improve
someone income without degrading somebody else

MOO

 Non-dominated solutions set

– Optimal solutions
according to Pareto
dominancy relationship

 → Pareto Set

Mapping from decision to
objective space → Pareto Front :

– maximal/minimal :
all of/a single
solution(s) for a given
objective function vector

f1 (min)

f2 (min)

Generally, MOO algorithms look for a minimal Pareto front

Properties of Fronts
Many metrics for comparing fronts with each others or with
(exact) Pareto front. Must take care of:

MOO

 Density number of solutions→

 Accurracy close to → Pareto front

 Sparsity diversity of solutions→

f2 (min)

f1 (min)

the best front

Comparison metrics
Many metrics for comparing fronts which each other or with
(exact) Pareto front.

MOO

 Front scalar value→

 Hypervolume compare two approximative fronts→

 Inverse Generational Distance compare to Pareto Front→

f2 (min)

f1 (min)

IGD1 = 15.4
IGD2 = 17.5

S

S

Pareto
Front

Comparison metrics
Impact of the different metrics on comparison results

MOO

 Scale / range of values for each metric

– Normalization requested or

 Implicit bias toward one objective

 Example : Kilos tons for a single objective inversed → →
dominance

f1 f2 80%f1 + 20%f2

cost garbage sum rank

Algorithms
Only a few of them here

MOO

 Aggregation based methods SOO→
– Weighted sum, Goal programming, Chebysheff, …

 A method based on Linear Programming

– e-constraints transforms objective into constraints→
– Exact method for IP

 A non dominance based method

– VEGA Process objectives → independently

SOO methods for MOO problems
Combine objectives in a weighted sum

MOO

 min f(x) = (f1(x), f2(x), …, fn(x))

 min f'(x) = 1.f1(x) + 2.f2(x) + … + n.fn(x)
with 1 + … + n = 1

 If convex space, optimal
point A tangeant to line of
head –1 / 2

search
space

SOO methods for MOO problems
Combine objectives in a weighted sum

MOO

 Problem for non convex fronts

– Non combination of weights i for some points
(unsupported solutions)

 For points between
b1 and b2, you can
shift the line to obtain
a better value for the
sum

f1

f2

2/3f1+1/3f2= 4

Dominated points
area

parallel
lines

SOO methods for MOO problems
Goal programming

MOO

 min f(x) = (f1(x), f2(x), …, fn(x))

 min f'(x) = |f1(x) - T1| + |f2(x) - T2| + … + |fn(x) - Tn|

 T1, T2, Tn are Target values for each objective

 Each objective can also be weighted

 Controlled bias

Lexicograph method

 Sort objectives by priority

 Optimize f1. If a single solution at optimal value f1
*, stop.

 Else, optimize f2 for solutions with f1
* value, and so on

 Controlled bias

EMOA
Evolution Based Multi-Objective Algorithms

MOO

 Mainly based on dominance property

– Evolution of a population neighborhood operators→
– Niching : fitness sharing/ crowding how to keep diversity→
– Elistism (e.g with archive) keep best individuals→

 PAES : (1 + 1) + crowding + archive [Knowles 1999]

 NSGA2 : (m, l) + population + crowding [Deb 1994]

 IBEA : indicator driven evolution [Zitler 2004]

 Many others : SPEA2, MOGA, ...

EMOA
A non Pareto based method: VEGA

MOO

 Vector Evaluated GA

– A Genetic Algorithm
– Objective changes for each sub-population selection

Initial
population

with n
sols

Sub-pop
selected

according to
objective 1

population
mixing k

sub-
populations

population
after

genetic
operations

Sub-pop
selected

according to
objective k

EMOA
NSGA-II: sorting population by fronts

MOO

 Elitist reproduction

 Dominating fronts first

 Most isolated solutions of
each front

ranking Selection
Distance

Fronts

Generation G Generation G+1

Non dom.
fronts

ranking

Selection

crossover

mutation

P
ar

en
t s

O
f fs

pr
i n

g

Rejected individuals
which minimize
crowding distanceEvaluation

EMOA
SMS-EMOA: guided by metrics on resulting front quality

MOO

 Example : hypervolume value obtained if you
accept or reject a solution

 Remove s1 or s2 ?

Population
sorted by fronts

P = { R1, R2, … Rv }

Add a solution
Q = P U { r }

r obtained by varying a
solution from P

 s Q
(s) = hv(Q) – hv(Q \ {s})

P = P \ argmin (s)

hv

y1

y2

EMOA
Pareto archived evolution Strategy

MOO

 Individual evolution by
mutation

 Fixed size archive of ND
individuals

– New individuals
checked against
archive

 Grid based crowding

 |A|=6

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non

Applications
MOO

 Real time scheduling : preemptions vs laxity vs blocking
resource – Parallel PAES

 Flash memory driver configuration : wearing vs latency vs mapping
table size – Parallel PAES

 Weather routing : time to destination vs hardware and human stress
PAES + heuristic

 Cloud federation storage : storage vs latency vs migration costs –
Matheuristic – NSGA2 + CPLEX

Real-Time task scheduling
Critical applications with timing constraints

 Definition and characteristics [Stankovic 1988]:

Processing inputs within a specified time
Correct behavior: functional correctness + timing
correctness

Failures lead to severe damages
Limited resources
etc.

 Design and development challenges

Increasing size
Increasing complexity: timing constraints, concurrency,
resources sharing, etc.

Important non-functional requirements: predictability,
cost, response-time, resources consumption, etc.

Multiple orthogonal performance criteria: improving one
criterion may lead to the degradation of another

Real-Time task scheduling
Mapping functions into tasks

 One solution = One mapping

 Scheduling tasks and analysing results

Real-Time task scheduling
Trade offs

 Laxity : capability to schedule additional functions
without violating timing constraints

 Preemptions : # of interruptions of tasks by
higher priority ones

[Architecture Exploration of Real-time Systems Based on Multi-Objective Optimization, Bouaziz et al, ICECCS 2015][Architecture Exploration of Real-time Systems Based on Multi-Objective Optimization, Bouaziz et al, ICECCS 2015]

Real-Time task scheduling
Simulation is time consuming

 Parallel asynchronous PAES with modified selection

[Efficient Parallel Multi-objective Optimization for Real-Time Systems Software Design Exploration, Bouaziz et al, Rapid
System Prototyping Symposium 2016]

Real-Time task scheduling
Ongoing : more rich models

 Shared ressources

 Multi-processor scheduling (partionned scheduling)

More possible objective functions #preemptions, #context switches, S
laxity, S blocking-time, #shared ressources, #tasks, S response-times, ...

 Correlated ?
correlation for
3 objectives,
100 testcases
L : S (laxities)
P : #preemptions
B : S (blocking times)

 Many objectives: reduce dynamically #objectives

L vs P P vs B L vs B

[Multi-Objective Design Exploration Approach for Ravenscar Real-time Systems, Bouaziz et al, JRTS 2018]

Flash Memory Driver Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W

Good Flash Memory Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W

@ mapping

 By page (PM) RAM cost→
 By block (BM) #E cost→

 Hybrid %PM→

BM vs PM choice for W

 depends on #pages
to be written

 → PM < threshold < BM

%PM

Good Flash Memory Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W

@ mapping

 By block (BM) #E cost→
 By page (PM) RAM cost→

 Hybrid %PM→

R/W response time

BM vs PM choice for W

 depends on #pages
to be written

 → PM < threshold < BM

Flash Memory Driver Configuration

Master

Simulator
CLASH

Parallel slaves

archive current
eval

selection

Dominance
Grid
Objectives

mutate

Parallelized Pareto Archived Evolution Strategy

[MaCACH: An adaptive cache-aware hybrid FTL mapping scheme using feedback control for efficient page-mapped space
management, Boukhobza et al, Journal of Systems Architecture, 2015]

Simulator
CLASHSimulator

CLASH

Flash Memory Configuration

Fronts

 convergency

 dispersion

4 – 6 % PM
30 – 54K erases
0.55 – 1.05ms RT

 Design maker
problem

Parallel version

 Same results, linear speedups

Yacht weather routing

Find the best route for a yacht

 Boat speed depends on

– TWA : true wind angle

– TWS : true wind speed

 Weather

wind (and waves …)
characteristics over the time

Find the best route for a yacht

 Boat speed depends on

– AWA : apparent wind angle

– Wind speed

 Weather

wind (and waves …)
characteristics over the time

Yacht weather routing

Algorithm

 Time discretization

 Starting at point (x,y, t), compute all points reached at time
t + t

 Following direction (angle step a)

 boatDir = k. a

 (windDir, winSpeed) = weather(x,y,t)

 boatSpeed = polar(windSpeed, windDir, boatDir)

 (x',y', t'=t + t) = addVector(xy, boatDir, boatSpeed*t)

a

Basic weather routing: isochrones

Cuts in the search tree heuristics→
 Possible angles

 Possible areas

 Lateness :
in the wake

Basic Weather routing: isochrones

Grid model

 Space discretization

 Dynamic Programming

 → shortest path

Basic Weather routing: mesh

Classical boat routing objectives

 Main : Time to destination min f1(route, polar, weather)

 Fuel consomption

 Risk (strong waves, icebergs)

Yacht routing

 Power management (windweel power plant)

 Boat wearing (e.g. Distance)

 Maneuvers effort (jibes, tacks, sail changes, …)

 Human stress (difficulties related to weather)

min f2(route, wind, strongwind, lightwind, jibes, tacks, ...)

MOO Yacht Weather routing

MOO Yacht Weather routing
SOO (time) weather routing

 Basics of MOO algorithm

 MaxSea vs Isochrones vs
Grid routing

MOO (time & stress) weather
routing

 Multiple EMOAs

 Way-points based
chromosome

 6 testcases

 Kruskall-Wallis non
parametric test

SOO IP problem solving

 A carpenter can make at most 6 seats and 3 tables
by day (8 hours of work)

– He sells a table $90 (working 1h15)

– A seat, $50 (working 45mn)

 How to maximize his benefit ?

 Linear programming : simplex method with O(2n)
complexity – Branch&Bound for IP/BP resolution

{90 t + 50c = f (s)
75 t + 45c ≤ 480
0 ≤ t ≤ 3
0 ≤ c ≤ 6

Mathematical formulation of an optimization problem (Linear
or Integer or Binary Programming)

CPLEX
solving

tool

add to P constraints
o1(P) o1m
o2(P) o2m

solve (z2 = min o2(P), P)

If P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 - 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S =

o1

o2

o1(P) o1m

o2(P) o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique
(for 2 objectives min)

Add to P constraints
o1(P) o1m
o2(P) o2m

solve (z2 = min o2(P), P)

If P infaisible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S =

o1

o2

o1(P) o1m

o2(P) o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique
(for 2 objectives min)

If P infeasible end
yes

no

o1

o2

o1(P) o1m

o2(P) o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique
(for 2 objectives min)

initialisation
o1m = + et o2m = -

P = initial problem
S =

Add to P constraints
o1(P) o1m
o2(P) o2m

solve (z2 = min o2(P), P)

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

Add to P constraints
o1(P) o1m
o2(P) o2m

solve (z2 = min o2(P), P)

If P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S =

o1

o2

o1(P) o1m

o2(P) o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique
(for 2 objectives min)

Add to P constraints
o1(P) o1m
o2(P) o2m

solve (z2 = min o2(P), P)

P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S =

o1

o2

MOO IP problem solving
Resolution with an e-constraints technique
(for 2 objectives min)

MOO

Matheuristics
Cloud storage

Mixing a MOIP with a MOEA
(for 2 objectives min)

 Solving all IP programs of e-constraint too much time consuming

 Good solutions with weighted sum (supported solutions) input to MOEA→

 Good solutions with MOEA warmstart technique for MOIP→

 Example of data storage for a federation of clouds

Cloud storage
Placing clients’ objets (3 copies each) on storage devices

 CSPs
Optimize cost
for CSP0

 Data inputs

– Local storage (HDD, SSD, etc.), with capacity, wearing, perf, cost …

– Remote storage (HDD, SSD, etc.), capacity, rental cost, migration cost …

– Clients objects replicas, size, I/O workload, SLA, location

 Objective functions

– Storage cost

– Latency cost

– Migration cost

 Constraints

– Limited capacities

– Limited IOPS

– Clients’ SLA

Cloud storage
Placing clients’ objets (3 copies each) on storage devices

 MOIP

 Solve 10 times as MILP
(agregate functions with
different weights)

 Inject solutions as NSGA2
initial population

Lab : ROV mission
How to define the route for
a ROV mission ?

 Define a route to a set of
locations. Some ones may
be ignored.

 Dive the ROV at any beacon

 Location have scores of
interrest

 Brest Harbour beacons
(buoys’ anchors) inspection

– Red score 1
– Green score 2
– Others score 3

(urgency of inspection)

Distance or energy
consumption matrix
between beacons

1
2
3
4
…
…

1 2 3 4 ….

2

4
142 m

142

Lab
PAES

Travelling Salesman Problem with Profit

 Data

– G = (V, E)
– Lengths vi v→ j

– Profits pi

 Bi-objective MOO

– min Svi v→ j vs max Spi

node v1 must be included

(not for us, no particular starting point)

L = 12,
P=4

L = 16,
P=5

TSP SOO TSPP MOO :
All cities not mandatory

Lab
PAES

TSP : multi objective Travelling Salesman Problem

 How to solve a bi-objective problem
with PAES ?
evaluation functions :

 min Length (L)

 max Profit (P) min loss of profit→

 How to encode solutions ?

 How to mutate solutions ?

 (possible operations ?)

L = 12, P=4

L = 16, P=6

Min L

Max P

Pareto front :
Values of solutions

Pareto set :
solutions

Min P loss

Min L

P
bound

Lab
PAES

Input data

Number of
beacons

Urgency of
inspecting a
each beacon
(similar here)

Distances between
beacons (half
symetric matrix)

2
3
4
5
..

1 2 3 4 5 ..

Lab
PAES

Input data
Urgency of inspecting beacon
(between 1 and 5 here)

Drawing beacons at their location according to
their urgency

 Chromosome of fixed size (nb beacons)

● Describe (in order) which beacons are visited (not all maybe)
eg : 24 beacons, tour 8 → 5 → 3 → 0 → 7 → 12 → 8
chrom[24] =
{ -1 -1 -1 -1 -1 -1 8 5 -1 -1 -1 3 -1 -1 -1 -1 -1 0 7 -1 -1 12 -1 -1 }

 Sol 1595 60.34 % (length, urgency loss)

Lab
PAES

Coding a solution

What kind of structure ? Give an example

How to code it in C ?

A solution

 Chromosome of fixed size (nb beacons)

 Describe (in order) which beacons are visited (not all maybe)
eg : 24 beacons, tour 8 → 5 → 3 → 0 → 7 → 12 → 8
chrom[24] =
{ -1 -1 -1 -1 -1 -1 8 5 -1 -1 -1 3 -1 -1 -1 -1 -1 0 7 -1 -1 12 -1 -1 }

 Sol 1595 60.34 % (length, urgency loss)

Lab
PAES

Coding a solution

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non

paes.dat params file

Random number seed
generations
Size of archive
Crowding grid thickness

PAES C structure

What are the input parameters
of the algorithm ?

(independant from testcase)

What are the data maintained by
the algorithm ?

(independant from testcase)

How to code the structure ?

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non

paes.dat params file

Random number seed
generations
Size of archive
Crowding grid thickness

PAES C structure

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

C coding of algorithm

Usage :

Lab
PAES

Todo list
 Go to the PAES directory, and compile the achieved program

corr_paes

 Play with it, modifying paes.dat, draw solutions, and beacon map

uncomment

 Now edit your own version and fill the evaluation function,
looking for tags in

 Compile and test

Lab
PAES

Todo list cont’d
 Use provided or your own version for testing the algorithm

 Plot time vs quality graph, varying #gens :

– Quality is measured as hypervolume of solution front, front set
is saved

– Time is printed at each execution

 In order to measure quality, use

→ it prints the HV

 To get the nadir point L value (U=100)

 Use same nadir value for all HV computations (you can put many
fronts in the same pfront file, separated by blank lines)

Lab
PAES

Todo list cont’d

 Use the same method for measuring convergency, computing
average HV difference between initial and final fronts

 If time, try to improve the code with a local search technique

– Look at 2-opt search operator for TSP, (Lin, 1965, n(n – 3)/2
neighbours)

T' = T U { ik, jl } \ { ij, kl }

– Propose a way to introduce it into the code, as a local search
technique, as a post optimization and/or at each evaluation

j

i
l

k
j

i
l

k

Bonus exercise

Lab
PAES

Todo list cont’d

● Use the same method for measuring convergency, computing
average HV difference between initial and final fronts

● If time, try to improve the code with a local search technique
– Look at 2-opt search operator for TSP, (Lin, 1965, n(n – 3)/2

neighbours)

T' = T U { ik, jl } \ { ij, kl }

– Propose a way to introduce it into the code, as a local search
technique, as a post optimization and/or at each evaluation

j

i
l

k
j

i
l

k

Bonus exercise

Lab : ROV mission extension
How to choose embedded equipment and
route for a ROV mission ?

 Choose a motor version : the heaviest is the
faster

 Choose a camera : the heaviest is the fastest
(more performant)

 Choose a projector : the heaviest is the fastest

 Choose a route among a set of possible one,
each has a length

 → minimize energy consumption, depending on
total weight, and energy factors

 minimize time depending on time factors→

Lab : ROV mission
Data

Energy consumption =
W(rov) * TF(motor) * EF(motor) * L + EF(camera) + EF(Projector)

Mission time =
time0*TF(path) + time1*TF(motor) + time2*TF(camera) + time3*TF(projector)

Equipment Weight Time
factor

Energy
factor

Motor 1 12 1 0.3

Motor 2 14 0.7 0.4

Motor 3 20 0.4 1.0

Camera 1 3 1.0 0.5

Camera 2 5 0.3 1.0

Projector 1 1 1.0 0.5

Projector 2 2 0.2 1.0

Path order Length Time
Factor

A → B → C → D 12 1.0

A → B → D → C 14 0.8

A → C → B → D 13 0.7

A → C → D → B 20 0.6

A → D → B → C 40 0.4

A → D → C → B 30 0.5

Use the TSP part of version 1

Questions ?

62

