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Introduction to MOO

Single vs (simultaneous) multiple objectives  

 Many optimization methods  (with 
constraints and single or multiple
optimization objectives) 

 A beam :  section (  weight)  vs →
deformation

Y. Collette – Renault Technocentre
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Goal : find trade-offs
SOO ≠ MOO (Multiple Objective Optimization)  

 Many objective fonctions 

– antagonism

 No best solution

– set of solutions

 Y. Collette – Renault Technocentre

1 meter

Deformation

MOO

Solutions
(beams)

deformation

se
ct

io
n



  

Decision process
Our goal is not to choose/decide ...  

Prior
knowledge

Decision
maker

Resolution
method

learning

preferences

results

 a priori search

– Priorizing bias (eg. Aggregation method)

 a posteriori search   get whole set of solutions→
– Maybe difficult to analyze

 Interactive search

– ...  helps the decision process

(solutions set)

MOO



  

Dominance
Our goal is to find good trade-offs  

MOO

 How to compare solutions to each 
other ?

 Solution a dominates solution b if

– a is as good as b for all of the 
optimization criteria  i :

  i, fi(a)  f i(b)

– There is at least one criterium j 
where a is better than b :

●  j, fj(a) < fj(b)

f1 (min)

f2 (min)

c

a

b



  

Pareto front
V. Pareto (economist): in some cases, you can not improve 
someone income without degrading somebody else  

MOO

 Non-dominated solutions set

– Optimal solutions 
according to Pareto
dominancy relationship

 → Pareto Set

Mapping from decision to 
objective space   → Pareto Front :

– maximal/minimal :
all of/a single 
solution(s) for a given 
objective function vector

f1 (min)

f2 (min)

Generally, MOO algorithms look for a minimal Pareto front



  

Properties of Fronts
Many metrics for comparing fronts with each others or with 
(exact) Pareto front. Must take care of:  

MOO

 Density  number of solutions→

 Accurracy  close to → Pareto front

 Sparsity  diversity of solutions→

f2 (min)

f1 (min)

the best front



  

Comparison metrics
Many metrics for comparing fronts which each other or with 
(exact) Pareto front. 

MOO

 Front  scalar value→

 Hypervolume   compare two approximative fronts→

 Inverse Generational Distance  compare to Pareto Front→

f2 (min)

f1 (min)

IGD1 = 15.4
IGD2 = 17.5

S

S

Pareto
Front



  

Comparison metrics
Impact of the different metrics on comparison results 

MOO

 Scale / range of values for each metric

– Normalization requested or

 Implicit bias toward one objective

 Example : Kilos  tons for a single objective  inversed → →
dominance

f1 f2 80%f1 + 20%f2

cost garbage sum rank



  

Algorithms
Only a few of them here

MOO

 Aggregation based methods  SOO→
– Weighted sum, Goal programming, Chebysheff, …

 A method based on Linear Programming

– e-constraints  transforms objective into constraints→
– Exact method for IP 

 A non dominance based method

– VEGA  Process objectives → independently



  

SOO methods for MOO problems
Combine objectives in a weighted sum

MOO

 min f(x) = (f1(x), f2(x), …, fn(x))

 min f'(x) = 1.f1(x) + 2.f2(x) + … + n.fn(x)
with 1 + … + n  =  1

 If convex space, optimal 
point A tangeant to line of 
head  –1 / 2 

search
space



  

SOO methods for MOO problems
Combine objectives in a weighted sum

MOO

 Problem for non convex fronts

– Non combination of weights i for some points 
(unsupported solutions)

 For points between 
b1 and b2, you can 
shift the line to obtain
a better value for the 
sum

f1

f2

2/3f1+1/3f2= 4

Dominated points
area

parallel
lines



  

SOO methods for MOO problems
Goal programming

MOO

 min f(x) = (f1(x), f2(x), …, fn(x))

 min f'(x) = |f1(x) - T1| + |f2(x) - T2| + … + |fn(x) - Tn|

 T1, T2, Tn are Target values for each objective

 Each objective can also be weighted

 Controlled bias 

Lexicograph method

 Sort objectives by priority

 Optimize f1. If a single solution at optimal value f1
*, stop.

 Else, optimize f2 for solutions with f1
* value, and so on

 Controlled bias 



  

EMOA
Evolution Based Multi-Objective Algorithms

MOO

 Mainly based on dominance property

– Evolution of a population  neighborhood operators→
– Niching : fitness sharing/ crowding  how to keep diversity→
– Elistism (e.g with archive)  keep best individuals→

 PAES : (1 + 1) + crowding + archive         [Knowles 1999]

 NSGA2 : (m, l) + population + crowding   [Deb 1994]

 IBEA : indicator driven evolution         [Zitler 2004]

 Many others : SPEA2, MOGA, ... 



  

EMOA
A non Pareto based method: VEGA

MOO

 Vector Evaluated GA

– A Genetic Algorithm
– Objective changes for each sub-population selection

Initial
population

with n
sols

Sub-pop
selected 

according to
objective 1

population
mixing k

sub-
populations

population
after

genetic
operations

Sub-pop
selected 

according to
objective k



  

EMOA
NSGA-II: sorting population by fronts

MOO

 Elitist reproduction

 Dominating fronts first

 Most isolated solutions of 
each front

ranking Selection
Distance

Fronts

Generation G Generation G+1

Non dom.
fronts

ranking

Selection

crossover

mutation

P
ar

en
t s

O
f fs

pr
i n

g

Rejected individuals
which minimize
crowding distanceEvaluation



  

EMOA
SMS-EMOA: guided by metrics on resulting front quality

MOO

 Example : hypervolume value obtained if you 
accept or reject a solution

 Remove s1 or s2 ?

Population
sorted by fronts

P = { R1, R2, … Rv }

Add a solution
Q = P U { r }

r obtained by varying a 
solution from P

 s  Q
(s) = hv(Q) – hv(Q \ {s})

P = P \ argmin (s)

hv

y1

y2



  

EMOA
Pareto archived evolution Strategy

MOO

 Individual evolution by 
mutation

 Fixed size archive of ND 
individuals

– New individuals 
checked against 
archive

 Grid based crowding

                        |A|=6 

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non



  

Applications
MOO

 Real time scheduling : preemptions vs laxity vs blocking 
resource – Parallel PAES

 Flash memory driver configuration : wearing vs latency vs mapping 
table size – Parallel PAES

 Weather routing : time to destination vs hardware and human stress
PAES + heuristic

 Cloud federation storage : storage vs latency vs migration costs – 
Matheuristic – NSGA2 + CPLEX



  

Real-Time task scheduling
Critical applications with timing constraints

 Definition and characteristics [Stankovic 1988]:

Processing inputs within a specified time
Correct behavior: functional correctness + timing 
correctness

Failures lead to severe damages
Limited resources
etc.

 Design and development challenges

Increasing size 
Increasing complexity: timing constraints, concurrency, 
resources sharing, etc.

Important non-functional requirements: predictability, 
cost, response-time, resources consumption, etc.

Multiple orthogonal performance criteria: improving one 
criterion may lead to the degradation of another



  

Real-Time task scheduling
Mapping functions into tasks

 One solution = One mapping

 Scheduling tasks and analysing results



  

Real-Time task scheduling
Trade offs

 Laxity : capability to schedule additional functions 
without violating timing constraints

 Preemptions : # of interruptions of tasks by 
higher priority ones 

[Architecture Exploration of Real-time Systems Based on Multi-Objective Optimization, Bouaziz et al,  ICECCS 2015][Architecture Exploration of Real-time Systems Based on Multi-Objective Optimization, Bouaziz et al,  ICECCS 2015]



  

Real-Time task scheduling
Simulation is time consuming

 Parallel asynchronous PAES with modified selection

[Efficient Parallel Multi-objective Optimization  for Real-Time Systems Software Design Exploration, Bouaziz et al,  Rapid 
System Prototyping Symposium 2016]



  

Real-Time task scheduling
Ongoing : more rich models

 Shared ressources

 Multi-processor scheduling (partionned scheduling)

More possible objective functions #preemptions, #context switches,  
laxity,  blocking-time, #shared ressources, #tasks,  response-times, ...

 Correlated ?
correlation for 
3 objectives, 
100 testcases
L :  (laxities)
P : #preemptions
B :  (blocking times)

 Many objectives: reduce dynamically #objectives

L vs P P vs B L vs B

[Multi-Objective Design Exploration Approach for Ravenscar Real-time Systems, Bouaziz et al,  JRTS 2018]



  

Flash Memory Driver Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W



  

Good Flash Memory Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W

@ mapping

 By page (PM)  RAM cost→
 By block (BM)  #E cost→

 Hybrid  %PM→

BM vs PM choice for W

 depends on #pages
to be written

  → PM <  threshold  < BM



  

%PM

Good Flash Memory Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W

@ mapping

 By block (BM)  #E cost→
 By page (PM)  RAM cost→

 Hybrid  %PM→

R/W response time

BM vs PM choice for W

 depends on #pages
to be written

  → PM <  threshold  < BM



  

Flash Memory Driver Configuration

Master

Simulator
CLASH

Parallel  slaves

archive current
eval

selection

Dominance
Grid
Objectives

mutate

Parallelized Pareto Archived Evolution Strategy

[MaCACH: An adaptive cache-aware hybrid FTL mapping scheme using feedback control for efficient page-mapped space 
management, Boukhobza et al, Journal of Systems Architecture, 2015]

Simulator
CLASHSimulator

CLASH



  

Flash Memory Configuration

Fronts

 convergency

 dispersion 

4 – 6 % PM
30 – 54K erases
0.55 – 1.05ms RT  

 Design maker
problem

Parallel version

 Same results, linear speedups



  

Yacht weather routing

Find the best route for a yacht

 Boat speed depends on 

– TWA : true wind angle

– TWS : true wind speed

 Weather 

wind (and waves …) 
characteristics over the time



  

Find the best route for a yacht

 Boat speed depends on 

– AWA : apparent wind angle

– Wind speed

 Weather  

wind (and waves …) 
characteristics over the time

Yacht weather routing



  

Algorithm

 Time discretization

 Starting at point (x,y, t), compute all points reached at time 
t + t

 Following direction (angle step a )

 boatDir = k. a  

  (windDir, winSpeed) = weather(x,y,t)

  boatSpeed = polar(windSpeed, windDir, boatDir)

  (x',y', t'=t + t) = addVector(xy, boatDir, boatSpeed*t)

a

Basic weather routing: isochrones



  

Cuts in the search tree  heuristics→
 Possible angles

 Possible areas

 Lateness : 
in the wake

Basic Weather routing: isochrones



  

Grid model  

 Space discretization

 Dynamic Programming 

 → shortest path

Basic Weather routing: mesh



  

Classical boat routing objectives

 Main : Time to destination min f1(route, polar, weather)

 Fuel consomption

 Risk (strong waves, icebergs)

Yacht routing

 Power management (windweel power plant)

 Boat wearing (e.g. Distance)

 Maneuvers effort (jibes, tacks, sail changes, …)

 Human stress (difficulties related to weather)

min f2(route, wind, strongwind, lightwind, jibes, tacks, ...)

MOO Yacht Weather routing



  

MOO Yacht Weather routing
SOO (time) weather routing

 Basics of MOO algorithm

 MaxSea vs Isochrones vs 
Grid routing

MOO (time & stress) weather 
routing 

 Multiple EMOAs

 Way-points based 
chromosome

 6 testcases

 Kruskall-Wallis non 
parametric test



  

SOO IP problem solving

 A carpenter can make at most 6 seats and 3 tables 
by day (8 hours of work)

– He sells a table $90 (working 1h15)

– A seat, $50 (working 45mn) 

 How to maximize his benefit ?

 Linear programming : simplex method with O(2n) 
complexity – Branch&Bound for IP/BP resolution

{90 t + 50c = f ( s)
75 t + 45c ≤ 480
0 ≤ t ≤ 3
0 ≤ c ≤ 6

Mathematical formulation of an optimization problem (Linear 
or Integer or Binary Programming) 

CPLEX
solving 

tool



  

add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

If P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 - 1

no

initialisation
o1m = + et o2m = -

P = initial problem 
S  = 

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)



  

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

If P infaisible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)



  

If P infeasible end
yes

no

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1



  

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

If P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)



  

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

o1

o2

MOO IP problem solving
Resolution with an e-constraints technique 
(for 2 objectives min)

MOO



  

Matheuristics
Cloud storage

Mixing a MOIP with a MOEA 
(for 2 objectives min)

 Solving all IP programs of e-constraint too much time consuming

 Good solutions with weighted sum (supported solutions)  input to MOEA→

 Good solutions with MOEA  warmstart technique for MOIP→

 Example of data storage for a federation of clouds



  

Cloud storage
Placing clients’ objets (3 copies each)  on storage devices 

 CSPs
Optimize cost
for CSP0

 Data inputs

– Local storage (HDD, SSD, etc.), with capacity, wearing, perf, cost …

– Remote storage (HDD, SSD, etc.), capacity, rental cost, migration cost …

– Clients objects replicas,  size, I/O workload, SLA, location

 Objective functions 

– Storage cost

– Latency cost

– Migration cost

 Constraints

– Limited capacities

– Limited IOPS

– Clients’ SLA



  

Cloud storage
Placing clients’ objets (3 copies each)  on storage devices 

 MOIP

 Solve 10 times as MILP
(agregate functions with 
different weights)

 Inject solutions as NSGA2
initial population





  

Lab : ROV mission
How to define the route for 
a ROV mission ?

 Define a route to a set of 
locations. Some ones may 
be ignored.

 Dive the ROV at any beacon

 Location have scores of 
interrest

 Brest Harbour beacons 
(buoys’ anchors) inspection

– Red score 1
– Green score 2
– Others score 3

(urgency of inspection)

 

Distance or energy
consumption matrix
between beacons

1
2
3
4
…
…

1  2  3  4  ….

2

4
142 m

142



  

Lab
PAES

Travelling Salesman Problem with Profit

 Data

– G = ( V, E)
– Lengths vi v→ j

– Profits pi

 Bi-objective MOO

– min vi v→ j  vs  max pi

node v1 must be included

(not for us, no particular starting point)

L = 12, 
P=4

L = 16, 
P=5

TSP SOO  TSPP MOO :
All cities not mandatory



  

Lab
PAES

TSP : multi objective Travelling Salesman Problem

 How to solve a bi-objective problem 
with PAES ?
evaluation functions :

 min Length (L)

 max Profit (P)  min loss of profit→

 How to encode solutions ?

 How to mutate solutions ?

 (possible operations ?)

L = 12, P=4

L = 16, P=6

Min L

Max P

Pareto front :
Values of solutions

Pareto set : 
solutions

Min P loss

Min L

P 
bound



  

Lab
PAES

Input data

Number of 
beacons

Urgency of 
inspecting a
each beacon 
(similar here)

Distances between 
beacons (half 
symetric matrix)

2
3
4
5
..

1      2      3     4      5      ..



  

Lab
PAES

Input data
Urgency of inspecting beacon 
(between 1 and 5 here)

Drawing beacons at their location according to 
their urgency



  

 Chromosome of fixed size (nb beacons)

● Describe (in order) which beacons are visited (not all maybe)
eg : 24 beacons, tour 8 → 5 → 3 → 0 → 7 → 12 → 8
chrom[24] = 
{ -1 -1 -1 -1 -1 -1  8  5  -1 -1 -1  3  -1 -1 -1 -1 -1  0  7 -1 -1 12 -1 -1 }

 Sol 1595 60.34 %  (length, urgency loss) 

Lab
PAES

Coding a solution

What kind of structure ? Give an example

How to code it in C ?

A solution



  

 Chromosome of fixed size (nb beacons)

 Describe (in order) which beacons are visited (not all maybe)
eg : 24 beacons, tour 8 → 5 → 3 → 0 → 7 → 12 → 8
chrom[24] = 
{ -1 -1 -1 -1 -1 -1  8  5  -1 -1 -1  3  -1 -1 -1 -1 -1  0  7 -1 -1 12 -1 -1 }

 Sol 1595 60.34 %  (length, urgency loss) 

Lab
PAES

Coding a solution



  

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non

paes.dat params file

Random number seed
# generations
Size of archive
Crowding grid thickness

PAES C structure

What are the input parameters
of the algorithm ?

(independant from testcase)

What are the data maintained by
the algorithm ?

(independant from testcase)

How to code the structure ?



  

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non

paes.dat params file

Random number seed
# generations
Size of archive
Crowding grid thickness

PAES C structure



  

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

C coding of algorithm

Usage :



  

Lab
PAES

Todo list
 Go to the PAES directory, and compile the achieved program 

corr_paes

 Play with it, modifying paes.dat, draw solutions, and beacon map

uncomment

 Now edit your own version and fill the evaluation function, 
looking for            tags in

 Compile and test  



  

Lab
PAES

Todo list cont’d
 Use provided or your own version for testing the algorithm

 Plot time vs quality graph, varying #gens :

– Quality is measured as hypervolume of solution front, front set 
is saved

– Time is printed at each execution

 In order to measure quality, use

→ it prints the HV

 To get the nadir point L value (U=100)

 Use same nadir value for all HV computations (you can put many 
fronts in the same pfront file, separated by blank lines)



  

Lab
PAES

Todo list cont’d

 Use the same method for measuring convergency, computing 
average HV difference between initial and final fronts

 If time, try to improve the code with a local search technique

– Look at 2-opt search operator for TSP, (Lin, 1965, n(n – 3)/2 
neighbours)

T' = T U { ik, jl } \ { ij, kl }

– Propose a way to introduce it into the code, as a local search 
technique, as a post optimization and/or at each evaluation

j

i
l

k
j

i
l

k

Bonus exercise



  

Lab
PAES

Todo list cont’d

● Use the same method for measuring convergency, computing 
average HV difference between initial and final fronts

● If time, try to improve the code with a local search technique
– Look at 2-opt search operator for TSP, (Lin, 1965, n(n – 3)/2 

neighbours)

T' = T U { ik, jl } \ { ij, kl }

– Propose a way to introduce it into the code, as a local search 
technique, as a post optimization and/or at each evaluation

j

i
l

k
j

i
l

k

Bonus exercise



  

Lab : ROV mission extension
How to choose embedded equipment and 
route for a ROV mission ?

 Choose a motor version : the heaviest is the 
faster

 Choose a camera : the heaviest is the fastest 
(more performant)

 Choose a projector : the heaviest is the fastest 

 Choose a route among a set of possible one, 
each has a length

 → minimize energy consumption, depending on 
total weight, and energy factors 

 minimize time depending on time factors→



  

Lab : ROV mission
Data

Energy consumption = 
W(rov) * TF(motor) * EF(motor) * L + EF(camera) + EF(Projector)

Mission time = 
time0*TF(path) + time1*TF(motor) + time2*TF(camera) + time3*TF(projector)  

Equipment Weight Time 
factor

Energy 
factor

Motor 1 12 1 0.3

Motor 2 14 0.7 0.4

Motor 3 20 0.4 1.0

Camera 1 3 1.0 0.5

Camera 2 5 0.3 1.0

Projector 1 1 1.0 0.5

Projector 2 2 0.2 1.0

Path order Length Time 
Factor

A → B → C → D 12 1.0

A → B → D → C 14 0.8

A → C → B → D 13 0.7

A → C → D → B 20 0.6

A → D → B → C 40 0.4

A → D → C → B 30 0.5

Use the TSP part of version 1



  

Questions ?

62


