
  

Introduction to
Multi-Objective Optimization

and its Applications

Laurent.Lemarchand@univ-brest.fr

Lab-STICC
labsticc.univ-brest.fr/~lemarch

mailto:Laurent.Lemarchand@univ-brest.fr


  

Introduction to MOO

Single vs (simultaneous) multiple objectives  

 Many optimization methods  (with 
constraints and single or multiple
optimization objectives) 

 A beam :  section (  weight)  vs →
deformation

Y. Collette – Renault Technocentre

Deformation

1 meter

MOO

Solutions
(beams)

deformation

se
ct

io
n



  

Goal : find trade-offs
SOO ≠ MOO (Multiple Objective Optimization)  

 Many objective fonctions 

– antagonism

 No best solution

– set of solutions

 Y. Collette – Renault Technocentre

1 meter

Deformation

MOO

Solutions
(beams)

deformation

se
ct

io
n



  

Decision process
Our goal is not to choose/decide ...  

Prior
knowledge

Decision
maker

Resolution
method

learning

preferences

results

 a priori search

– Priorizing bias (eg. Aggregation method)

 a posteriori search   get whole set of solutions→
– Maybe difficult to analyze

 Interactive search

– ...  helps the decision process

(solutions set)

MOO



  

Dominance
Our goal is to find good trade-offs  

MOO

 How to compare solutions to each 
other ?

 Solution a dominates solution b if

– a is as good as b for all of the 
optimization criteria  i :

  i, fi(a)  f i(b)

– There is at least one criterium j 
where a is better than b :

●  j, fj(a) < fj(b)

f1 (min)

f2 (min)

c

a

b



  

Pareto front
V. Pareto (economist): in some cases, you can not improve 
someone income without degrading somebody else  

MOO

 Non-dominated solutions set

– Optimal solutions 
according to Pareto
dominancy relationship

 → Pareto Set

Mapping from decision to 
objective space  → Pareto Front :

– maximal/minimal :
all of/a single 
solution(s) for a given 
objective function vector

f1 (min)

f2 (min)

Generally, MOO algorithms look for a minimal Pareto front



  

Properties of Fronts
Many metrics for comparing fronts with each others or with 
(exact) Pareto front. Must take care of:  

MOO

 Density  number of solutions→

 Accurracy  close to → Pareto front

 Sparsity  diversity of solutions→

f2 (min)

f1 (min)

the best front



  

Comparison metrics
Many metrics for comparing fronts which each other or with 
(exact) Pareto front. 

MOO

 Front  scalar value→

 Hypervolume   compare two approximative fronts→

 Inverse Generational Distance  compare to Pareto Front→

f2 (min)

f1 (min)

IGD1 = 15.4
IGD2 = 17.5

S

S

Pareto
Front



  

Comparison metrics
Impact of the different metrics on comparison results 

MOO

 Scale / range of values for each metric

– Normalization requested or

 Implicit bias toward one objective

 Example : Kilos  tons for a single objective  inversed → →
dominance

f1 f2 80%f1 + 20%f2

cost garbage sum rank



  

Algorithms
Only a few of them here

MOO

 Aggregation based methods  SOO→
– Weighted sum, Goal programming, Chebysheff, …

 A method based on Linear Programming

– e-constraints  transforms objective into constraints→
– Exact method for IP 

 A non dominance based method

– VEGA  Process objectives → independently



  

SOO methods for MOO problems
Combine objectives in a weighted sum

MOO

 min f(x) = (f1(x), f2(x), …, fn(x))

 min f'(x) = 1.f1(x) + 2.f2(x) + … + n.fn(x)
with 1 + … + n  =  1

 If convex space, optimal 
point A tangeant to line of 
head  –1 / 2 

search
space



  

SOO methods for MOO problems
Combine objectives in a weighted sum

MOO

 Problem for non convex fronts

– Non combination of weights i for some points 
(unsupported solutions)

 For points between 
b1 and b2, you can 
shift the line to obtain
a better value for the 
sum

f1

f2

2/3f1+1/3f2= 4

Dominated points
area

parallel
lines



  

SOO methods for MOO problems
Goal programming

MOO

 min f(x) = (f1(x), f2(x), …, fn(x))

 min f'(x) = |f1(x) - T1| + |f2(x) - T2| + … + |fn(x) - Tn|

 T1, T2, Tn are Target values for each objective

 Each objective can also be weighted

 Controlled bias 

Lexicograph method

 Sort objectives by priority

 Optimize f1. If a single solution at optimal value f1
*, stop.

 Else, optimize f2 for solutions with f1
* value, and so on

 Controlled bias 



  

EMOA
Evolution Based Multi-Objective Algorithms

MOO

 Mainly based on dominance property

– Evolution of a population  neighborhood operators→
– Niching : fitness sharing/ crowding  how to keep diversity→
– Elistism (e.g with archive)  keep best individuals→

 PAES : (1 + 1) + crowding + archive         [Knowles 1999]

 NSGA2 : (m, l) + population + crowding   [Deb 1994]

 IBEA : indicator driven evolution         [Zitler 2004]

 Many others : SPEA2, MOGA, ... 



  

EMOA
A non Pareto based method: VEGA

MOO

 Vector Evaluated GA

– A Genetic Algorithm
– Objective changes for each sub-population selection

Initial
population

with n
sols

Sub-pop
selected 

according to
objective 1

population
mixing k

sub-
populations

population
after

genetic
operations

Sub-pop
selected 

according to
objective k



  

EMOA
NSGA-II: sorting population by fronts

MOO

 Elitist reproduction

 Dominating fronts first

 Most isolated solutions of 
each front

ranking Selection
Distance

Fronts

Generation G Generation G+1

Non dom.
fronts

ranking

Selection

crossover

mutation

P
ar

en
t s

O
f fs

pr
i n

g

Rejected individuals
which minimize
crowding distanceEvaluation



  

EMOA
SMS-EMOA: guided by metrics on resulting front quality

MOO

 Example : hypervolume value obtained if you 
accept or reject a solution

 Remove s1 or s2 ?

Population
sorted by fronts

P = { R1, R2, … Rv }

Add a solution
Q = P U { r }

r obtained by varying a 
solution from P

 s  Q
(s) = hv(Q) – hv(Q \ {s})

P = P \ argmin (s)

hv

y1

y2



  

EMOA
Pareto archived evolution Strategy

MOO

 Individual evolution by 
mutation

 Fixed size archive of ND 
individuals

– New individuals 
checked against 
archive

 Grid based crowding

                        |A|=6 

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non



  

Applications
MOO

 Real time scheduling : preemptions vs laxity vs blocking 
resource – Parallel PAES

 Flash memory driver configuration : wearing vs latency vs mapping 
table size – Parallel PAES

 Weather routing : time to destination vs hardware and human stress
PAES + heuristic

 Cloud federation storage : storage vs latency vs migration costs – 
Matheuristic – NSGA2 + CPLEX



  

Real-Time task scheduling
Critical applications with timing constraints

 Definition and characteristics [Stankovic 1988]:

Processing inputs within a specified time
Correct behavior: functional correctness + timing 
correctness

Failures lead to severe damages
Limited resources
etc.

 Design and development challenges

Increasing size 
Increasing complexity: timing constraints, concurrency, 
resources sharing, etc.

Important non-functional requirements: predictability, 
cost, response-time, resources consumption, etc.

Multiple orthogonal performance criteria: improving one 
criterion may lead to the degradation of another



  

Real-Time task scheduling
Mapping functions into tasks

 One solution = One mapping

 Scheduling tasks and analysing results



  

Real-Time task scheduling
Trade offs

 Laxity : capability to schedule additional functions 
without violating timing constraints

 Preemptions : # of interruptions of tasks by 
higher priority ones 

[Architecture Exploration of Real-time Systems Based on Multi-Objective Optimization, Bouaziz et al,  ICECCS 2015][Architecture Exploration of Real-time Systems Based on Multi-Objective Optimization, Bouaziz et al,  ICECCS 2015]



  

Real-Time task scheduling
Simulation is time consuming

 Parallel asynchronous PAES with modified selection

[Efficient Parallel Multi-objective Optimization  for Real-Time Systems Software Design Exploration, Bouaziz et al,  Rapid 
System Prototyping Symposium 2016]



  

Real-Time task scheduling
Ongoing : more rich models

 Shared ressources

 Multi-processor scheduling (partionned scheduling)

More possible objective functions #preemptions, #context switches, S 
laxity, S blocking-time, #shared ressources, #tasks, S response-times, ...

 Correlated ?
correlation for 
3 objectives, 
100 testcases
L : S (laxities)
P : #preemptions
B : S (blocking times)

 Many objectives: reduce dynamically #objectives

L vs P P vs B L vs B

[Multi-Objective Design Exploration Approach for Ravenscar Real-time Systems, Bouaziz et al,  JRTS 2018]



  

Flash Memory Driver Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W



  

Good Flash Memory Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W

@ mapping

 By page (PM)  RAM cost→
 By block (BM)  #E cost→

 Hybrid  %PM→

BM vs PM choice for W

 depends on #pages
to be written

  → PM <  threshold  < BM



  

%PM

Good Flash Memory Configuration

Operations

 Operations E/R/W

 E on blocks (wear)

 R/W on pages

 E before W

@ mapping

 By block (BM)  #E cost→
 By page (PM)  RAM cost→

 Hybrid  %PM→

R/W response time

BM vs PM choice for W

 depends on #pages
to be written

  → PM <  threshold  < BM



  

Flash Memory Driver Configuration

Master

Simulator
CLASH

Parallel  slaves

archive current
eval

selection

Dominance
Grid
Objectives

mutate

Parallelized Pareto Archived Evolution Strategy

[MaCACH: An adaptive cache-aware hybrid FTL mapping scheme using feedback control for efficient page-mapped space 
management, Boukhobza et al, Journal of Systems Architecture, 2015]

Simulator
CLASHSimulator

CLASH



  

Flash Memory Configuration

Fronts

 convergency

 dispersion 

4 – 6 % PM
30 – 54K erases
0.55 – 1.05ms RT  

 Design maker
problem

Parallel version

 Same results, linear speedups



  

Yacht weather routing

Find the best route for a yacht

 Boat speed depends on 

– TWA : true wind angle

– TWS : true wind speed

 Weather 

wind (and waves …) 
characteristics over the time



  

Find the best route for a yacht

 Boat speed depends on 

– AWA : apparent wind angle

– Wind speed

 Weather  

wind (and waves …) 
characteristics over the time

Yacht weather routing



  

Algorithm

 Time discretization

 Starting at point (x,y, t), compute all points reached at time 
t + t

 Following direction (angle step a )

 boatDir = k. a  

  (windDir, winSpeed) = weather(x,y,t)

  boatSpeed = polar(windSpeed, windDir, boatDir)

  (x',y', t'=t + t) = addVector(xy, boatDir, boatSpeed*t)

a

Basic weather routing: isochrones



  

Cuts in the search tree  heuristics→
 Possible angles

 Possible areas

 Lateness : 
in the wake

Basic Weather routing: isochrones



  

Grid model  

 Space discretization

 Dynamic Programming 

 → shortest path

Basic Weather routing: mesh



  

Classical boat routing objectives

 Main : Time to destination min f1(route, polar, weather)

 Fuel consomption

 Risk (strong waves, icebergs)

Yacht routing

 Power management (windweel power plant)

 Boat wearing (e.g. Distance)

 Maneuvers effort (jibes, tacks, sail changes, …)

 Human stress (difficulties related to weather)

min f2(route, wind, strongwind, lightwind, jibes, tacks, ...)

MOO Yacht Weather routing



  

MOO Yacht Weather routing
SOO (time) weather routing

 Basics of MOO algorithm

 MaxSea vs Isochrones vs 
Grid routing

MOO (time & stress) weather 
routing 

 Multiple EMOAs

 Way-points based 
chromosome

 6 testcases

 Kruskall-Wallis non 
parametric test



  

SOO IP problem solving

 A carpenter can make at most 6 seats and 3 tables 
by day (8 hours of work)

– He sells a table $90 (working 1h15)

– A seat, $50 (working 45mn) 

 How to maximize his benefit ?

 Linear programming : simplex method with O(2n) 
complexity – Branch&Bound for IP/BP resolution

{90 t + 50c = f ( s)
75 t + 45c ≤ 480
0 ≤ t ≤ 3
0 ≤ c ≤ 6

Mathematical formulation of an optimization problem (Linear 
or Integer or Binary Programming) 

CPLEX
solving 

tool



  

add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

If P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 - 1

no

initialisation
o1m = + et o2m = -

P = initial problem 
S  = 

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)



  

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

If P infaisible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)



  

If P infeasible end
yes

no

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1



  

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

If P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

o1

o2

o1(P)  o1m

o2(P)  o2m

MOO IP problem solvingMOO

Resolution with an e-constraints technique 
(for 2 objectives min)



  

Add to P constraints
o1(P)  o1m
o2(P)  o2m

solve (z2 = min o2(P), P) 

P infeasible end
yes

Add to P constraint
o2(P) = z2

solve (z1 = min o1(P), P)

Add (z1, z2) to S
o1m = z1 - 1
o2m = z2 + 1

no

initialisation
o1m = + et o2m = -

P = initial problem
S  = 

o1

o2

MOO IP problem solving
Resolution with an e-constraints technique 
(for 2 objectives min)

MOO



  

Matheuristics
Cloud storage

Mixing a MOIP with a MOEA 
(for 2 objectives min)

 Solving all IP programs of e-constraint too much time consuming

 Good solutions with weighted sum (supported solutions)  input to MOEA→

 Good solutions with MOEA  warmstart technique for MOIP→

 Example of data storage for a federation of clouds



  

Cloud storage
Placing clients’ objets (3 copies each)  on storage devices 

 CSPs
Optimize cost
for CSP0

 Data inputs

– Local storage (HDD, SSD, etc.), with capacity, wearing, perf, cost …

– Remote storage (HDD, SSD, etc.), capacity, rental cost, migration cost …

– Clients objects replicas,  size, I/O workload, SLA, location

 Objective functions 

– Storage cost

– Latency cost

– Migration cost

 Constraints

– Limited capacities

– Limited IOPS

– Clients’ SLA



  

Cloud storage
Placing clients’ objets (3 copies each)  on storage devices 

 MOIP

 Solve 10 times as MILP
(agregate functions with 
different weights)

 Inject solutions as NSGA2
initial population





  

Lab : ROV mission
How to define the route for 
a ROV mission ?

 Define a route to a set of 
locations. Some ones may 
be ignored.

 Dive the ROV at any beacon

 Location have scores of 
interrest

 Brest Harbour beacons 
(buoys’ anchors) inspection

– Red score 1
– Green score 2
– Others score 3

(urgency of inspection)

 

Distance or energy
consumption matrix
between beacons

1
2
3
4
…
…

1  2  3  4  ….

2

4
142 m

142



  

Lab
PAES

Travelling Salesman Problem with Profit

 Data

– G = ( V, E)
– Lengths vi v→ j

– Profits pi

 Bi-objective MOO

– min Svi v→ j  vs  max Spi

node v1 must be included

(not for us, no particular starting point)

L = 12, 
P=4

L = 16, 
P=5

TSP SOO  TSPP MOO :
All cities not mandatory



  

Lab
PAES

TSP : multi objective Travelling Salesman Problem

 How to solve a bi-objective problem 
with PAES ?
evaluation functions :

 min Length (L)

 max Profit (P)  min loss of profit→

 How to encode solutions ?

 How to mutate solutions ?

 (possible operations ?)

L = 12, P=4

L = 16, P=6

Min L

Max P

Pareto front :
Values of solutions

Pareto set : 
solutions

Min P loss

Min L

P 
bound



  

Lab
PAES

Input data

Number of 
beacons

Urgency of 
inspecting a
each beacon 
(similar here)

Distances between 
beacons (half 
symetric matrix)

2
3
4
5
..

1      2      3     4      5      ..



  

Lab
PAES

Input data
Urgency of inspecting beacon 
(between 1 and 5 here)

Drawing beacons at their location according to 
their urgency



  

 Chromosome of fixed size (nb beacons)

● Describe (in order) which beacons are visited (not all maybe)
eg : 24 beacons, tour 8 → 5 → 3 → 0 → 7 → 12 → 8
chrom[24] = 
{ -1 -1 -1 -1 -1 -1  8  5  -1 -1 -1  3  -1 -1 -1 -1 -1  0  7 -1 -1 12 -1 -1 }

 Sol 1595 60.34 %  (length, urgency loss) 

Lab
PAES

Coding a solution

What kind of structure ? Give an example

How to code it in C ?

A solution



  

 Chromosome of fixed size (nb beacons)

 Describe (in order) which beacons are visited (not all maybe)
eg : 24 beacons, tour 8 → 5 → 3 → 0 → 7 → 12 → 8
chrom[24] = 
{ -1 -1 -1 -1 -1 -1  8  5  -1 -1 -1  3  -1 -1 -1 -1 -1  0  7 -1 -1 12 -1 -1 }

 Sol 1595 60.34 %  (length, urgency loss) 

Lab
PAES

Coding a solution



  

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non

paes.dat params file

Random number seed
# generations
Size of archive
Crowding grid thickness

PAES C structure

What are the input parameters
of the algorithm ?

(independant from testcase)

What are the data maintained by
the algorithm ?

(independant from testcase)

How to code the structure ?



  

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive if n.d

End ? end
yes

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

non

paes.dat params file

Random number seed
# generations
Size of archive
Crowding grid thickness

PAES C structure



  

Lab
PAES

Algorithm

Generate solution C
Eval C & add it to archive

Mute C to candidate M
Eval M

 M dominated
by C ?

Compare M to archive
Update archive

Select C from (M, archive)

yes

no

C coding of algorithm

Usage :



  

Lab
PAES

Todo list
 Go to the PAES directory, and compile the achieved program 

corr_paes

 Play with it, modifying paes.dat, draw solutions, and beacon map

uncomment

 Now edit your own version and fill the evaluation function, 
looking for            tags in

 Compile and test  



  

Lab
PAES

Todo list cont’d
 Use provided or your own version for testing the algorithm

 Plot time vs quality graph, varying #gens :

– Quality is measured as hypervolume of solution front, front set 
is saved

– Time is printed at each execution

 In order to measure quality, use

→ it prints the HV

 To get the nadir point L value (U=100)

 Use same nadir value for all HV computations (you can put many 
fronts in the same pfront file, separated by blank lines)



  

Lab
PAES

Todo list cont’d

 Use the same method for measuring convergency, computing 
average HV difference between initial and final fronts

 If time, try to improve the code with a local search technique

– Look at 2-opt search operator for TSP, (Lin, 1965, n(n – 3)/2 
neighbours)

T' = T U { ik, jl } \ { ij, kl }

– Propose a way to introduce it into the code, as a local search 
technique, as a post optimization and/or at each evaluation

j

i
l

k
j

i
l

k

Bonus exercise



  

Lab
PAES

Todo list cont’d

● Use the same method for measuring convergency, computing 
average HV difference between initial and final fronts

● If time, try to improve the code with a local search technique
– Look at 2-opt search operator for TSP, (Lin, 1965, n(n – 3)/2 

neighbours)

T' = T U { ik, jl } \ { ij, kl }

– Propose a way to introduce it into the code, as a local search 
technique, as a post optimization and/or at each evaluation

j

i
l

k
j

i
l

k

Bonus exercise



  

Lab : ROV mission extension
How to choose embedded equipment and 
route for a ROV mission ?

 Choose a motor version : the heaviest is the 
faster

 Choose a camera : the heaviest is the fastest 
(more performant)

 Choose a projector : the heaviest is the fastest 

 Choose a route among a set of possible one, 
each has a length

 → minimize energy consumption, depending on 
total weight, and energy factors 

 minimize time depending on time factors→



  

Lab : ROV mission
Data

Energy consumption = 
W(rov) * TF(motor) * EF(motor) * L + EF(camera) + EF(Projector)

Mission time = 
time0*TF(path) + time1*TF(motor) + time2*TF(camera) + time3*TF(projector)  

Equipment Weight Time 
factor

Energy 
factor

Motor 1 12 1 0.3

Motor 2 14 0.7 0.4

Motor 3 20 0.4 1.0

Camera 1 3 1.0 0.5

Camera 2 5 0.3 1.0

Projector 1 1 1.0 0.5

Projector 2 2 0.2 1.0

Path order Length Time 
Factor

A → B → C → D 12 1.0

A → B → D → C 14 0.8

A → C → B → D 13 0.7

A → C → D → B 20 0.6

A → D → B → C 40 0.4

A → D → C → B 30 0.5

Use the TSP part of version 1



  

Questions ?

62


