Optimisation dans les graphes

- Algorithmes de parcours d'un graphe
 - comment accéder successivement à tous les sommets d'un graphe ?
- Algorithmes de plus court chemin :
 - comment aller d'un sommet à un autre en minimisant la longueur des chemins visités ?
- Arbre de poids minimum :
 - comment déterminer les arêtes absolument nécessaires pour préserver la connexité d'un graphe.

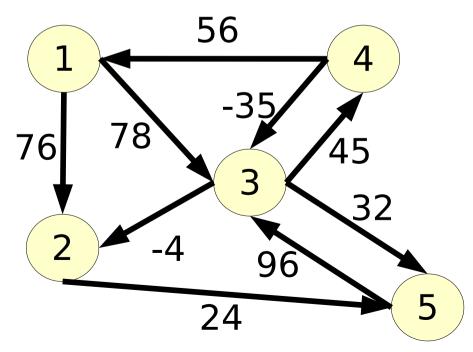
Flots

Problèmes de cheminement

 Donner une longueur l(u) à chaque arc (ou arête) du graphe

• Plus court chemin entre 2 sommets i et j : chemin μ t.q $\sum_{u \in \mu} I(u)$ est minimum

 Plus court chemin entre 1 et 5 ?

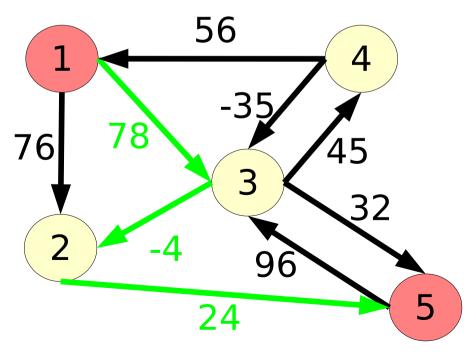


Problèmes de cheminement

 Donner une longueur l(u) à chaque arc (ou arête) gu graphe

• Plus court chemin entre 2 sommets i et j : chemin μ t.q $\sum_{u \in \mu} I(u)$ est minimum

 Plus court chemin entre 1 et 5 ? 98



Problèmes de cheminement

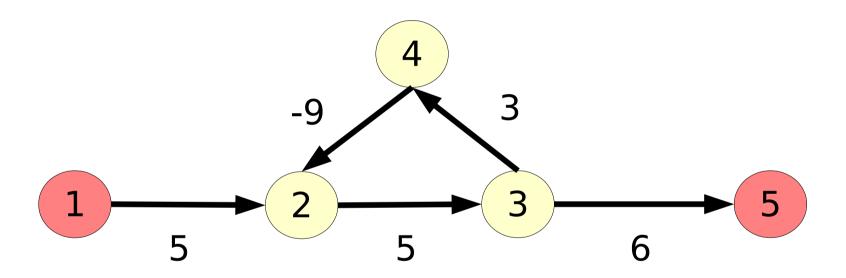
- Plus courts chemins de un vers tous :
 - longueurs positives **Dijkstra**
 - dans le plan (1 vers 1): Sedgewick et Vitter
 - longueurs réelles Ford-Bellman
 - Solution si aucun cycle de longueur < 0 à partir du sommet initial
 - graphes acycliques **Bellman**
- Plus courts chemins de tous vers tous Floyd Solution si aucun cycle de longueur < 0 dans le graphe

L.L. - Graphes

4

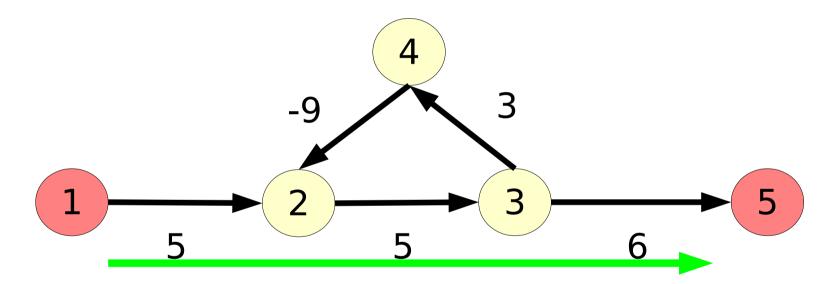
Cycles de longueur négative (cycles absorbants)

Plus court chemins S₁ vers S₅?



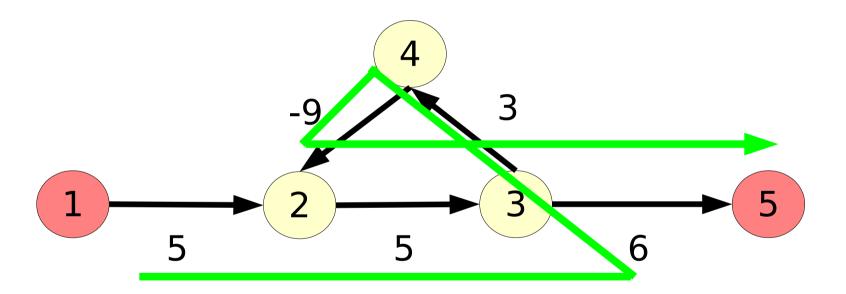
Cycles de longueur négative

Plus court chemins S₁ vers S₅?
 16?



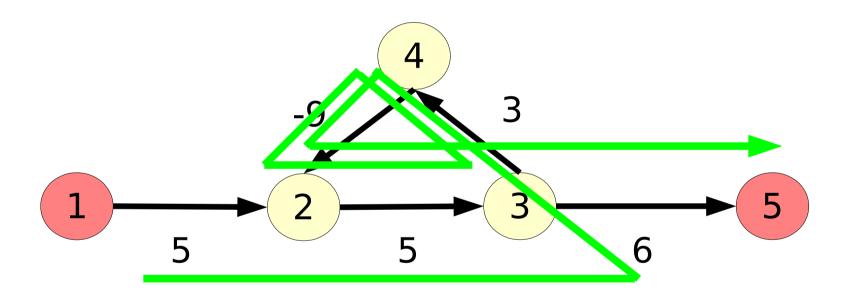
Cycles de longueur négative

Plus court chemins S₁ vers S₅?
 15 ?



Cycles de longueur négative

Plus court chemins S₁ vers S₂?
 14?



Pas de solution

- Dijkstra ne le détecte pas
- Ford-Bellman et Floyd le signalent

Algorithme de Dijkstra

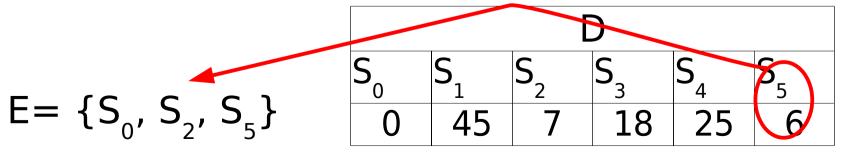
- Graphe G=(X, U). $I(u)>0 \forall u \in U$
- Plus court chemins de S₀ vers tous les autres sommets de X

- Marque (nombre) D(i) associée à tous les sommets du graphe :
 - représente la longueur du meilleur chemin de S₀ vers S à chaque étape
 - contient la longueur minimale à la fin de l'algorithme

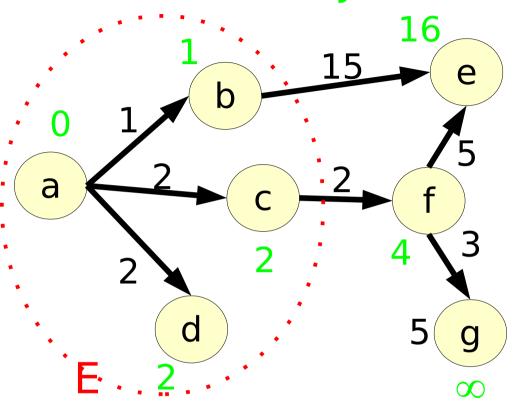
Algorithme de Dijkstra

- Ensemble E des sommets dont la plus courte distance à S₀est déjà connue
 - un sommet est ajouté dans E à chaque étape
 - il y a |X| étapes
 - pour chaque sommet S, D(S) est éventuellement amélioré à une étape donnée

 $D(S_3)$ peut il passer de 18 à 23 ?

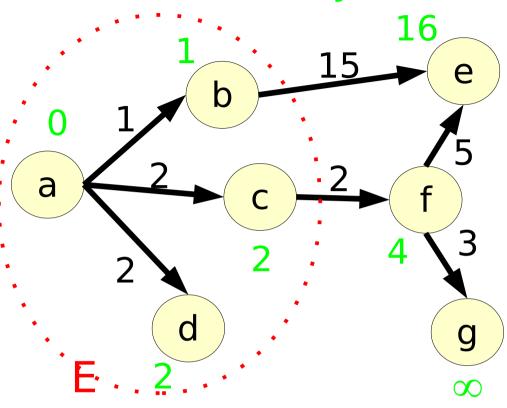


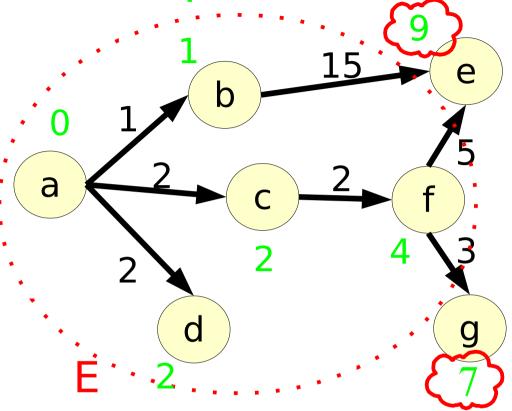
Dijkstra - Une étape



- f est le sommet choisi
 f ∉ E, D(f) = 4
- e et g sont adjacents à f mise à jour ?

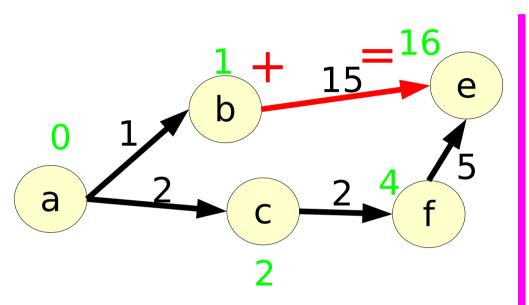
Dijkstra - Une étape

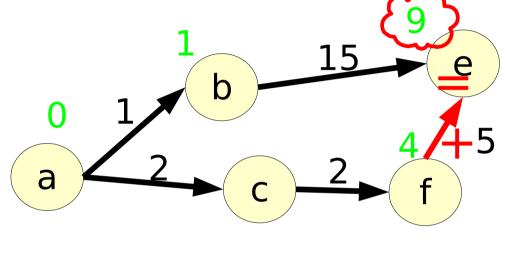




- finclus dans E
- e et g effectivement mis à jour

Dijkstra - mise à jour





aller de a à b + arc b \rightarrow e

aller de a à f + arc f \rightarrow e

Dijkstra - algorithme

Dijkstra(Graphe G, Sommet S_₀)(Tableau D)

1-Initialisation

Ensemble $E \leftarrow \{\}$

Tableau D, D[S₀] \leftarrow 0 et \forall S_i \neq S₀, D[i] \leftarrow ∞

2-Itération courante

choisir S_i ∉ E t.q. D[j] minimum

$$\mathsf{E} \leftarrow \!\! \mathsf{E} \cup \{\mathsf{S}_{\mathsf{i}}^{}\}$$

pour chaque k t.q. S_k ∉ E

Si D[j]+
$$I_{j\rightarrow k}$$

$$\mathsf{D}[\mathsf{k}] \leftarrow \mathsf{D}[\mathsf{j}] + \mathsf{I}_{\mathsf{j} \rightarrow \mathsf{k}}$$

Donne les longueurs mais pas les chemins!

Dijkstra - calcul des chemins

1-Initialisation

$$\forall S_i, C[i] \leftarrow S_0$$

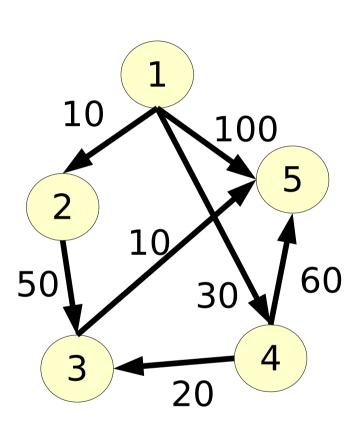
2-Itération courante

- - -

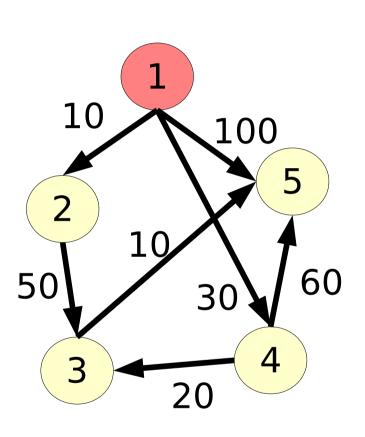
Si D[j]+I<sub>j
$$\rightarrow$$
k</sub> < D[k]
$$C[k] \leftarrow S_{i}$$

affChemin(Sommets $S_0 S_i$,
 Tableau C)
 Si $S_i \neq S_0$ affChemin($S_0, C[S_i], C$)
 afficher ($\rightarrow S_i$)

C[i] est le prédécesseur de i sur le chemin $S_0 \rightarrow S_i$



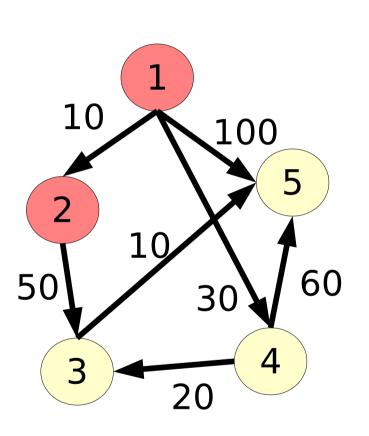
		D					
#	Choisi	D[1]	D[2]	D[3]	D[4]	D[5]	
Init	_	0	∞	∞	∞	∞	



		D					
#	Choisi	D[1]	D[2]	D[3]	D[4]	D[5]	
Init	-	0	∞	∞	∞	∞	
1	$S_{\scriptscriptstyle 1}$	0	10	∞	30	100	

Ε

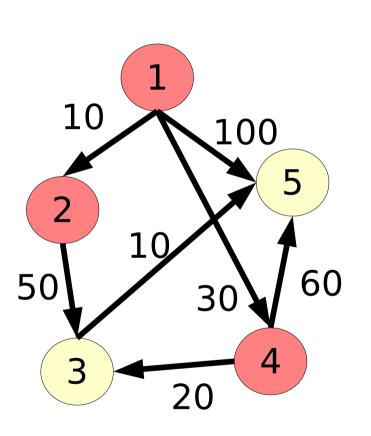
MAJ



		D				
#	Choisi	D[1]	D[2]	D[3]	D[4]	D[5]
Init	-	0	∞	∞	∞	∞
1	$S_{\scriptscriptstyle 1}$	0	10	∞	30	100
2	S ₂	0	10	60	30	100

Ε

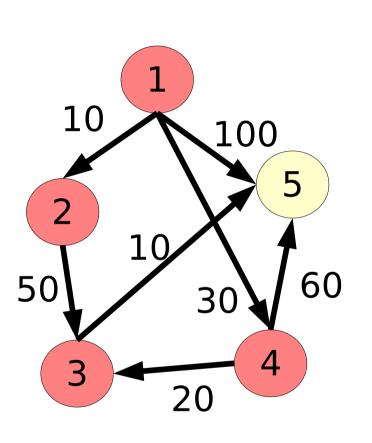
MAJ



				D		
#	Choisi	D[1]	D[2]	D[3]	D[4]	D[5]
Init	-	0	∞	∞	∞	∞
1	$S_{\scriptscriptstyle 1}$	0	10	∞	30	100
2	S ₂	0	10	60	30	100
3	S ₄	0	10	50	30	90

Е

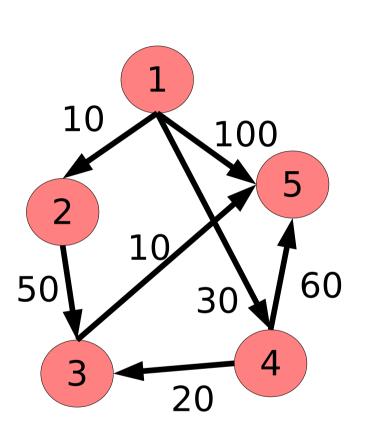
MAJ



				D		
#	Choisi	D[1]	D[2]	D[3]	D[4]	D[5]
Init	-	0	∞	∞	∞	∞
1	$S_{\scriptscriptstyle 1}$	0	10	∞	30	100
2	$S_{\scriptscriptstyle 2}$	0	10	60	30	100
3	S_4	0	10	50	30	90
4	S_3	0	10	50	30	60

Е

MAJ



				D		
#	Choisi	D[1]	D[2]	D[3]	D[4]	D[5]
Init	-	0	∞	∞	∞	∞
1	$S_{\scriptscriptstyle 1}$	0	10	∞	30	100
2	S_2	0	10	60	30	100
3	$S_{_{4}}$	0	10	50	30	90
4	S_3	0	10	50	30	60
5	S_5	0	10	50	30	60

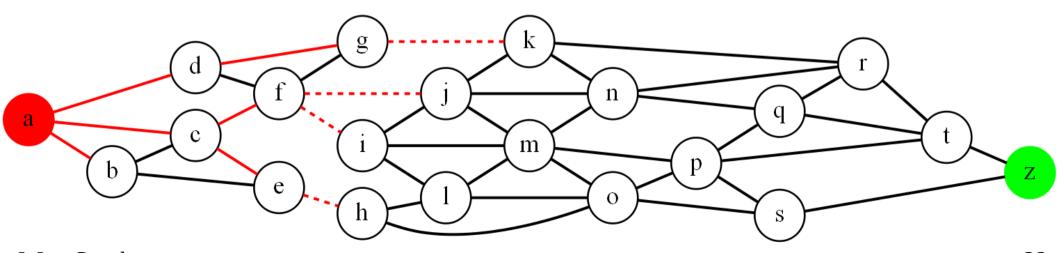
Е

MAJ

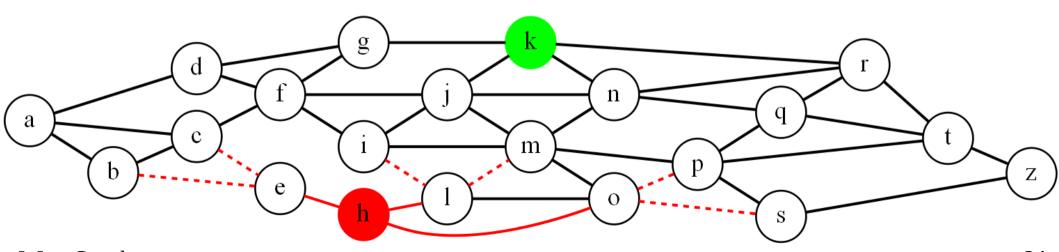
Adapter Dijkstra paire de points dans le plan

- Adaptation : plus court chemin d'un point s à un point t
 Géographie, routage GPS
- Pas besoin de voir tous les points
- Arrêt de l'algorithme lorsque t est trouvé

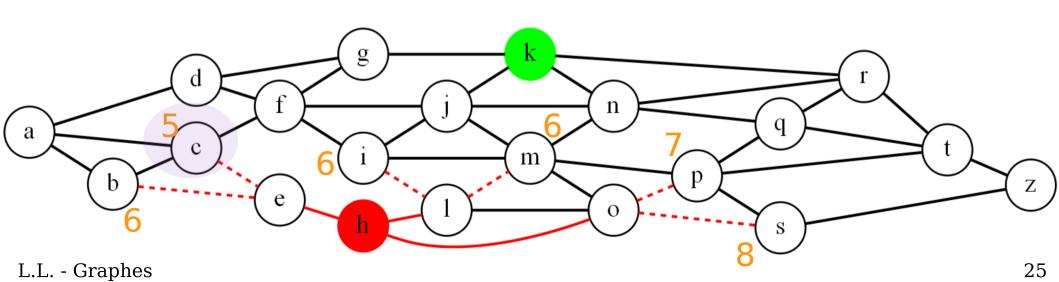
- Adaptation : plus court chemin d'un point s à un point t Géographie, routage GPS
- Pas besoin de voir tous les points
- Aller dans la bonne direction
 - Aller de a à z ... ok



- Adaptation : plus court chemin d'un point s à un point t Geographie, routage GPS
- Pas besoin de voir tous les points
- Aller dans la bonne direction
 - Aller de h à k? arbre très large!



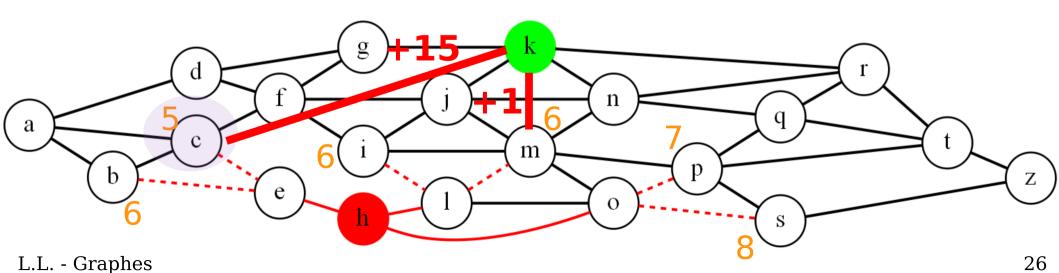
- Normalement, avec Dijkstra, le choix du prochain sommet fixé dépend de D[s]. Ici sommet e choisi
- Pas de choix lie à la connaissance géographique!



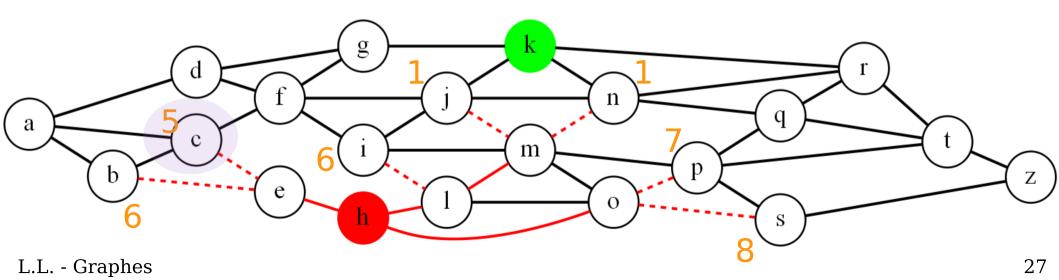
- Normalement, avec Dijkstra, le choix du prochain sommet fixé dépend de D[s]. Ici sommet e choisi
- Pas de choix lie à la connaissance géographique!
- Ajout dans D de la distance restante estimée

$$-D[m] = 6 + 1$$

$$-D[c] = 5 + 15$$

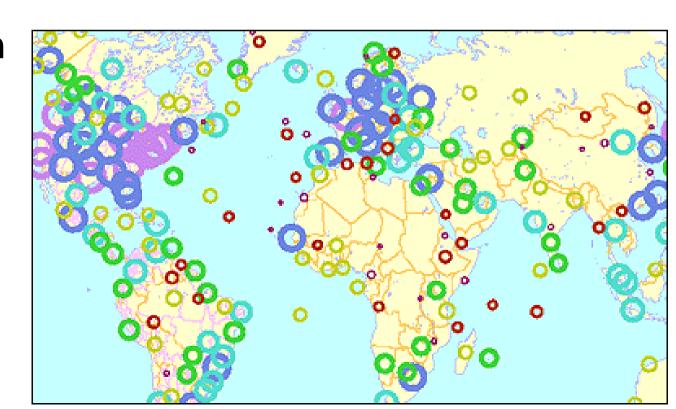


- Normalement, avec Dijkstra, le choix du prochain sommet fixé dépend de D[s]. Ici sommet e choisi
- Pas de choix lie à la connaissance géographique!
- Ajout dans D de la distance restante estimée
 - -D[m] = 6 + 1
 - On progresse dans la bonne direction



Algorithme de Dijkstra

- Application : Open shortest Path First
 Topologie de réseau connue par tous les routeurs
- Plus court chemin de machine i à machine j (en nombre de routeurs)
- Equilibrage de la charge (routes engorgées plus longues)



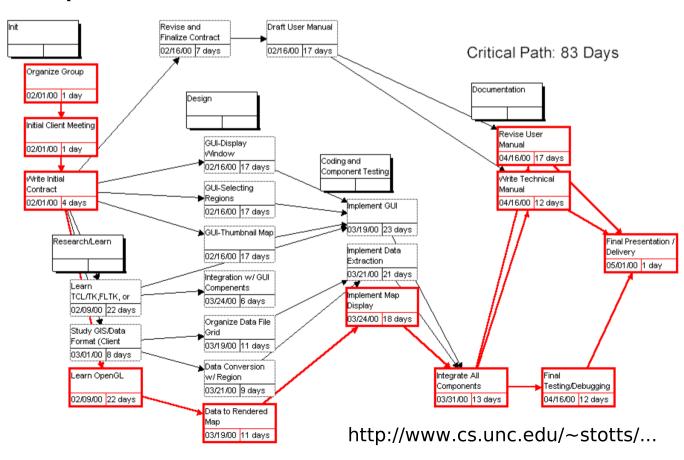
Algorithme de Dijkstra

Application : PERT
 ensemble de tâches avec contraintes de
 précédence et durée d'exécution
 Dijkstra : dates au plus tôt

Critical path:
 plus long
 chemin

tâche

Date ? durée



Algorithme de Dijkstra Complexité

• Complexité : N*O(N + A/N) $O(N^2 + A)$ pour G=(X, U) Mise à jour successeurs A=|U| Calcul du minimum Etapes

Itération courante Dijkstra choisir $S_j \notin E$ t.q. D[j] minimum $E \leftarrow E \cup \{S_j\}$ pour chaque k t.q. $S_k \notin E$ $D[k] = min(D[k], [D[j]+l_{j\rightarrow k})$

Algorithme de Dijkstra Complexité

• Complexité : N*O(N + A/N)
$$O(N^2 + A)$$
 pour G=(X, U) Mise à jour successeurs $A=|U|$ Calcul du minimum Etapes

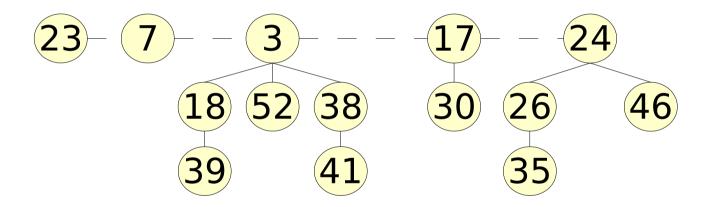
Itération courante Dijkstra choisir $S_j \notin E$ t.q. D[j] minimum $E \leftarrow E \cup \{S_j\}$ pour chaque k t.q. $S_k \notin E$ D[k] = min(D[k], [D[j]+I_{j→k})

Tas de Fibonacci pour le calcul du minimum en O(log₂ N)

 $O(N.log_2 N + A)$

Algorithme de Dijkstra Tas de Fibonacci

• Collection d'au plus $\log_2 N$ arbres contenant des clés. Un fils à toujours une clé \geq à son parent.



- Opérations principalement utilisées, en O(log₂ N)
 - Extraire-Min(T) à chaque itération
 - Diminuer-clé(S_i) quand m.à.j des successeurs

Algorithme de Ford-Bellman

- Graphe G=(X, U). I(u) quelconques
- Plus court chemins de S₀ vers tous les autres sommets de X
- Marquage D(i) comme pour Dijkstra
- Principe : arriver à vérifier

$$\forall S_{i}, S_{j} \in X, D^{*}(i) + I_{i \rightarrow j} \leq D^{*}(j)$$
car si $\exists j \text{ t.q. } D(i) + I_{i \rightarrow j} \geq D^{*}(j)$ $D^{*}(i) = \text{optimum}$
alors: $D^{*}(j) = D^{*}(i) + I_{i \rightarrow i}$

Algorithme de Ford-Bellman Mise à jour de D(i)

A chaque étape, pour l'ensemble des sommets

$$\label{eq:sigma} \begin{array}{l} \forall \ \mathsf{S}_{_{\mathrm{i}}} \in \mathsf{X}, \ \forall \ \mathsf{S}_{_{\mathrm{j}}} \in \Gamma^{\mathsf{S}\mathsf{i}} \\ \\ v \leftarrow \mathsf{D}(\mathsf{i}) + \mathsf{I}_{_{\mathsf{i} \rightarrow \mathsf{j}}} \\ \\ \mathsf{s}\mathsf{i} \ v < \mathsf{D}(\mathsf{j}) \ \mathsf{alors} \\ \\ \mathsf{D}(\mathsf{j}) \leftarrow \mathsf{v} \\ \\ \mathsf{C}(\mathsf{j}) \leftarrow \mathsf{S}_{_{\mathrm{i}}} \end{array}$$

mise à jour du chemin vers S_j en passant par S_j

Algorithme de Ford-Bellman Nombre d'étapes

- A chaque étape k, mise à jour des chemins de longueur k :
 - Si D(i) correspond à un chemin de longueur k-1
 - Si \exists S_j \in Γ Si t.q. D(j) > D(i) + I_{i \rightarrow j}

 Alors D(j) \leftarrow D(i) + I_{i \rightarrow j}

 Chemin de longueur k
 - vrai à l'ordre 1.
- N-1 étapes (chemins de longueur maxi N-1 entre S0 et les autres sommets
- Si chemin > N-1 arcs, boucle de longueur négative

Ford-Bellman - énoncé

FordBellman(Graphe G, Sommet S₀)(Tableaux D, C)

1-Initialisation

entier $k \leftarrow 0$

Tableaux D, C
$$\forall S_i C[i] \leftarrow S_i$$

$$D[S_0] \leftarrow 0$$
, et $\forall S_i \neq S_0$ $D[i] \leftarrow \infty$

2-Itération courante

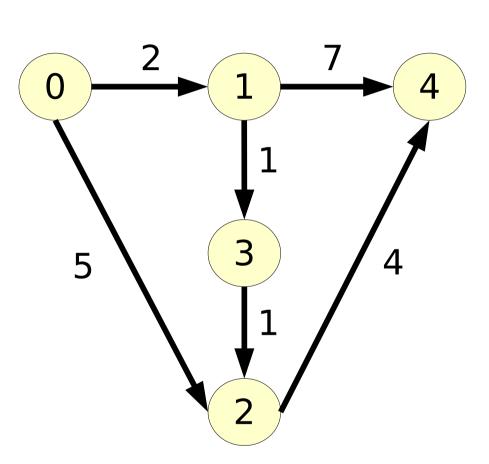
 $modif \leftarrow faux$

$$\forall S_i \in X, \forall S_j \in \Gamma^{Si}$$

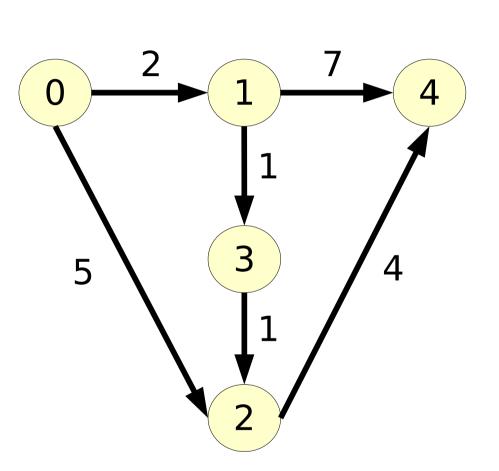
$$v \leftarrow D(i) + I_{i \rightarrow i}$$

si v < D(j) alors $D(i) \leftarrow v$ $C(j) \leftarrow S_i$ modif ← vrai 3- Test de fin si modif = faux fin $k \leftarrow k + 1$ si k = N fin

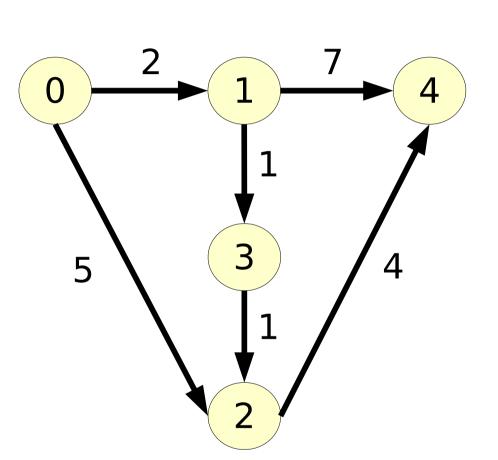
sinon aller en 2-



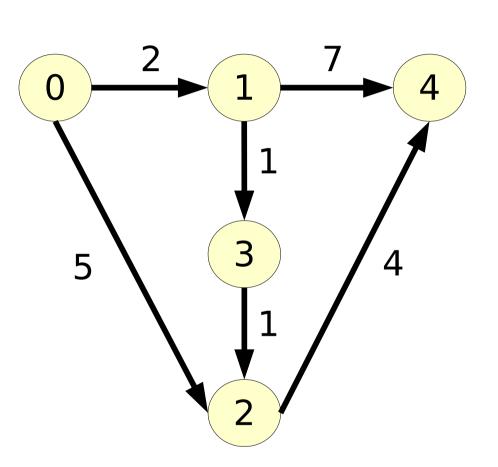
		D				
#	Succs de	D[0]	D[1]	D[2]	D[3]	D[4]
0	S ₀	0	2	5	∞	∞



		D				
#	Succs de	D[0]	D[1]	D[2]	D[3]	D[4]
0	S ₀	0	2	5	∞	∞
1	S ₀	0	-	_	_	_
	S ₁	0	-	_	3	9
	S ₂	0	-	-	_	-
	S ₃	0	-	4	-	-



		D				
#	Succs de	D[0]	D[1]	D[2]	D[3]	D[4]
0	S ₀	0	2	5	∞	∞
1	S_0	0	-	_	_	-
	$S_{_1}$	0	-	_	3	9
	S ₂	0	-	_	_	-
	S ₃	0	-	4	_	-
2	S_0	0	-	-	-	-
	S ₁	0	-	-	-	-
	S ₂	0	-	-	-	8
	S ₃	0	-	-	-	-



		D				
#	Succs de	D[0]	D[1]	D[2]	D[3]	D[4]
0	S ₀	0	2	5	∞	∞
1	S ₀	0	ı	_	_	-
	$S_{_1}$	0	I	-	3	-
	S ₂	0	ı	-	-	-
	S ₃	0	-	4	_	-
2	S ₀	0	1	-	-	-
	S ₁	0	-	-	-	-
	S ₂	0	ı	-	ı	8
	S ₃	0	-	-	-	-
3	K = 3 et modif = faux					

Chemin de capacité maximale

- Capacité c_u d'un arc : nombre positif (c_u≥0)
- Capacité d'un chemin P : minimum des capacités des arcs du chemin

$$C_{P} = \min_{\{u \in C\}} c_{u}$$

 Le problème du chemin de capacité maximum (CCM) est analogue au problème du plus court chemin (PCC) :

$$\begin{split} \text{CCM}: \forall \ S_{j} \neq S_{0} \in \Gamma^{\text{Si}}, \ C_{j} *= \max_{\{i \in \Gamma - 1 \mid Sj\}} \ \min(C_{i} *, \ C_{i \rightarrow j}) \\ \text{et } C_{0} *= \infty \end{split}$$

$$PCC: \ \forall \ S_j \neq S_0 \in \Gamma^{Si}, \ D_j^* = min_{\{i \in \Gamma - 1Sj\}} \ D_i^* + I_{i \to j} \ et \ D_0^* = 0$$

Capacité maximale - algorithme

CapacitéMax(Graphe G, Sommet S₀)(Tableau D)

1-Initialisation

Ensemble $E \leftarrow \{S_0\}$

Tableau D, D[i] $\leftarrow c_{0\rightarrow i}$ (si l'arc $S_0 \rightarrow S_i$ existe, 0 sinon)

2-Itération courante

choisir S_i ∉ E t.q. D[j] maximum

$$E \leftarrow E \cup \{S_i\}$$

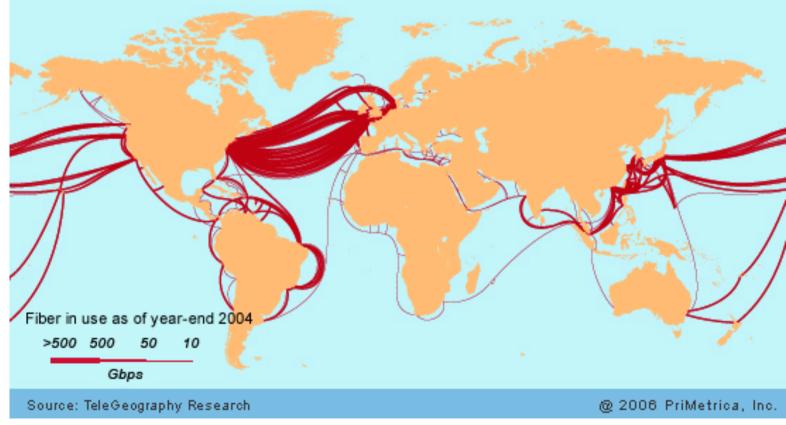
pour chaque k t.q. S_k ∉ E

$$D[k] = \max(D[k], \min([D[j], c_{j\rightarrow k}))$$

Exercice

 Par où obtient on le meilleur débit pour télécharger un film australien (si les liaisons terrestres sont de capacités très supérieures aux liaisons sous

marines)?

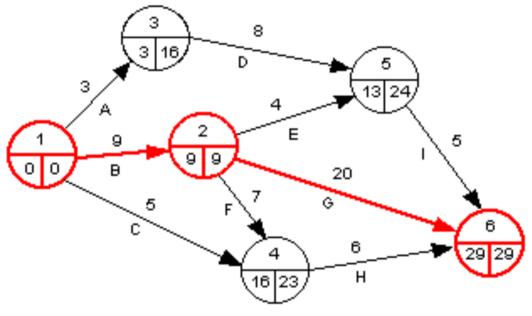


Graphes acycliques orientés

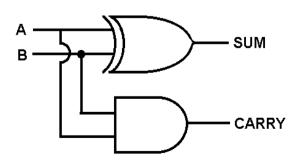
Certains graphes ne peuvent contenir de cycles par

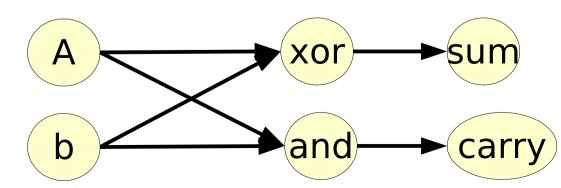
construction

- PERT



- Réseau booléen



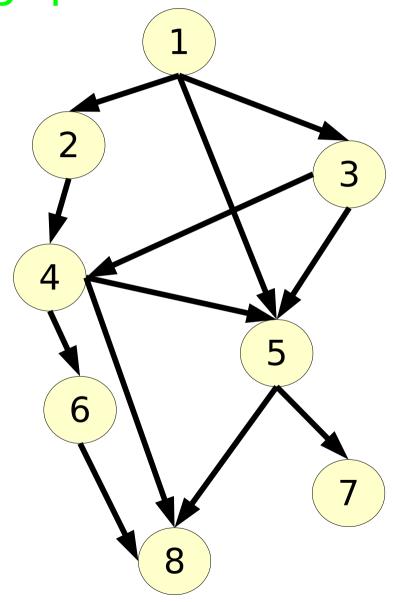


Graphes acycliques orientés tri topologique

• $\forall S_i \in X, \forall S_j \in \Gamma^{s_i}$, index $[S_i] < index[S_j]$ possible uniquement si aucun cycle!

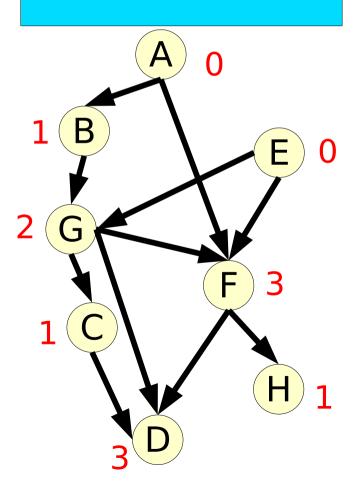
 L'examen des sommets suivant l'ordre topologique permet de calculer des plus courts chemins en O(n+m), même si lg<0

(Dijkstra: O(n.log(n))



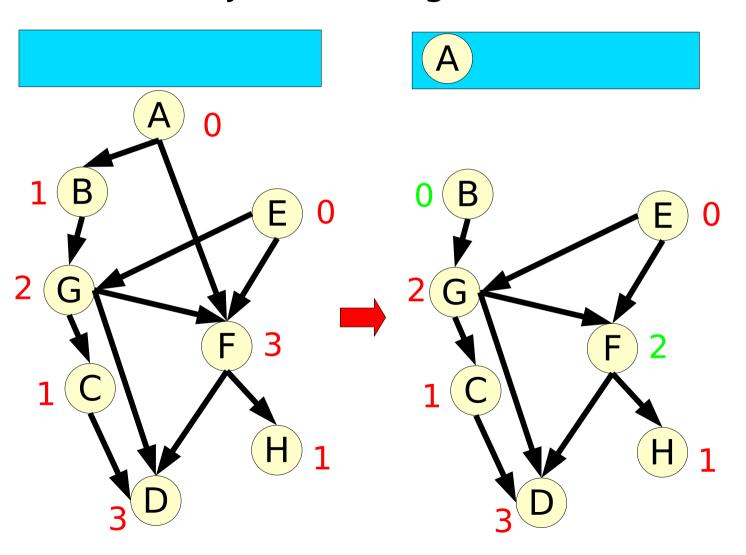
Tri topologique - principe

 Les sommets de degré négatif nuls sont les premiers dans l'ordre topologique



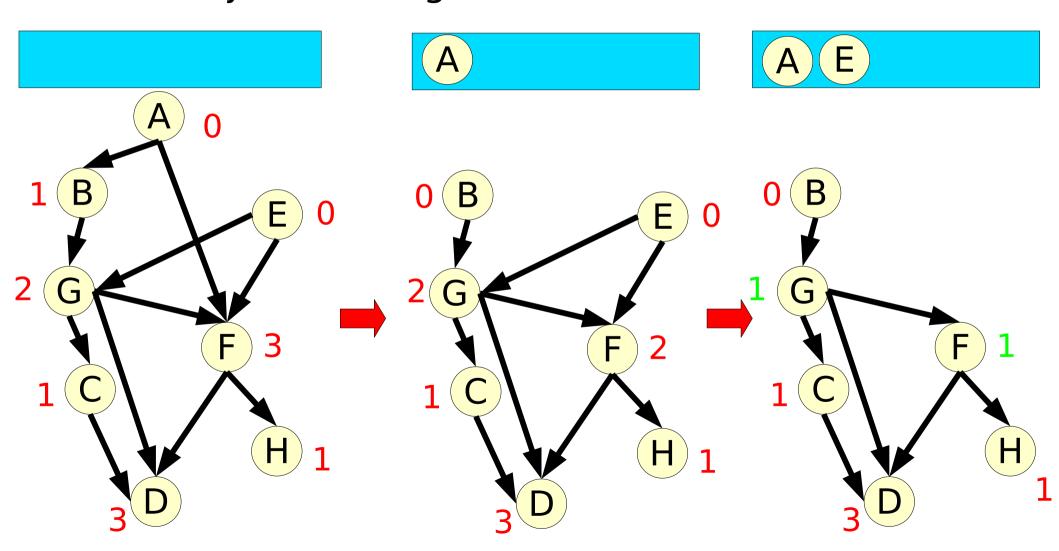
Tri topologique - principe

• On en choisit un et on le supprime. on met à jour les degrés



Tri topologique - principe

• On en choisit un et on le supprime. on met à jour les degrés



Tri topologique - algorithme

TriTopologique(Graphe G)(Tableau topologique T)

1-Initialisation

$$\forall S_i \in X, d[S_i] \leftarrow deg^{-}(S_i)$$

$$idx \leftarrow 0$$

liste
$$\leftarrow \{ S_i \in X, | d[S_i] = 0 \}$$

2-Itération courante

si liste vide aller en **3**retirer un sommet S de liste

$$\begin{aligned} & \text{idx} \leftarrow \text{idx+1} \\ & \text{T[idx]} \leftarrow \text{S} \\ & \forall \ \text{S}_{j} \in \Gamma^{\text{S}}, \\ & \text{d[S}_{j}] \leftarrow \text{d[S}_{j}] - 1 \\ & \text{sid[S}_{j}] = 0 \\ & \text{liste} \leftarrow \text{liste} \cup \{\text{S}_{i}\} \end{aligned}$$

3-fin

si idx < |X| cycle sinon retourner T

Plus court chemin sur GAO algorithme de Bellman

algorithme de Bellman BellmanGAO(Graphe G, sommet S_A)(Tableau D)

1-Initialisation

renuméroter les sommets par ordre topologique Soit i_{α} l'index de S_{α} .

$$\forall 1 \leq j < i_0, D[S_j] \leftarrow \infty$$
 $D[S_{i_0}] \leftarrow 0$

pas de chemin $S_{i0} \rightarrow S_{j}$

2-Itération courante

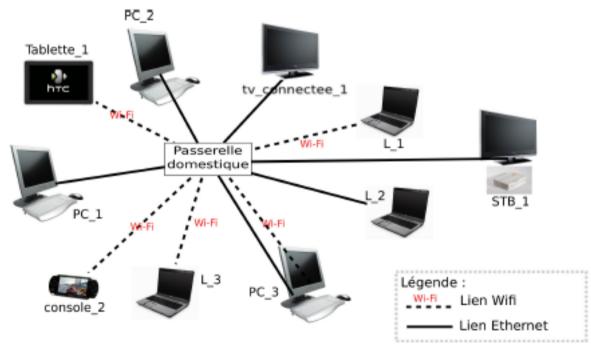
pour j de i₀+1 à n

$$\mathsf{D}[\mathsf{S}_{\mathsf{j}}] \leftarrow \mathsf{min}_{\, \{\, \mathsf{Si} \, \in \Gamma - 1 \, \mathsf{Sj} \, \}} \, \mathsf{D}[\mathsf{S}_{\mathsf{i}}] + \, \mathsf{I}_{\mathsf{i} \rightarrow \mathsf{j}}$$

Plus court chemins Application en QoS

Domaine de la Qualité de service (QoS)

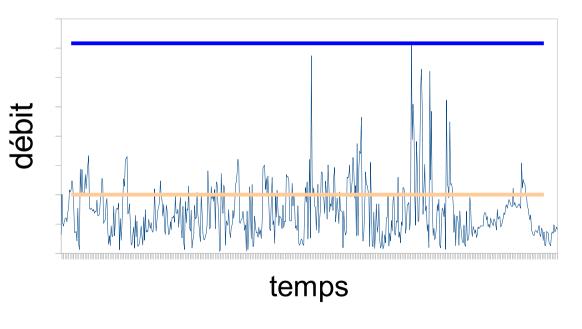
- Diffusion de vidéo sur réseau domestique
- Priorité de la vidéo / navigation web
- Réservation de bande passante



Plus court chemins Bande passante variable

Nombreux encodages à débit variable (VBR)

- Réserver le max ? Perte de BP
- Réserver la moyenne ? Perte de QoS

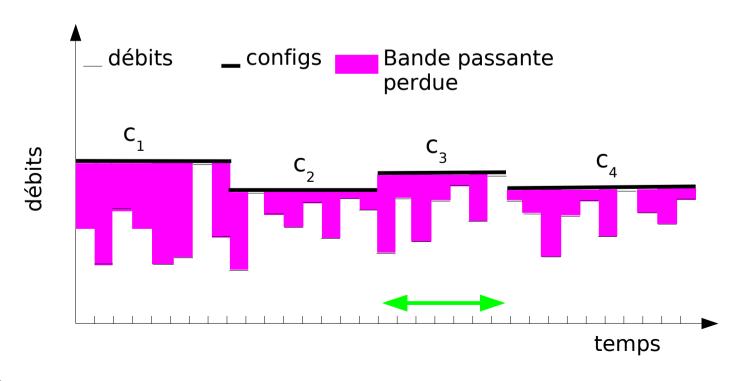


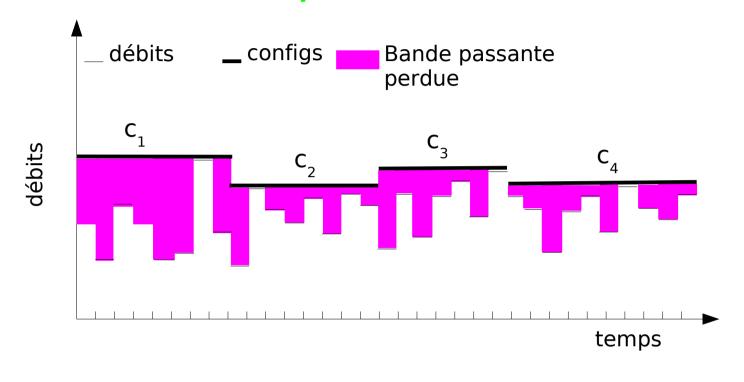
Réservation variable sous contraintes

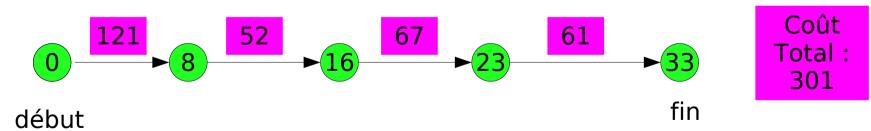
Plus court chemins Bande passante variable

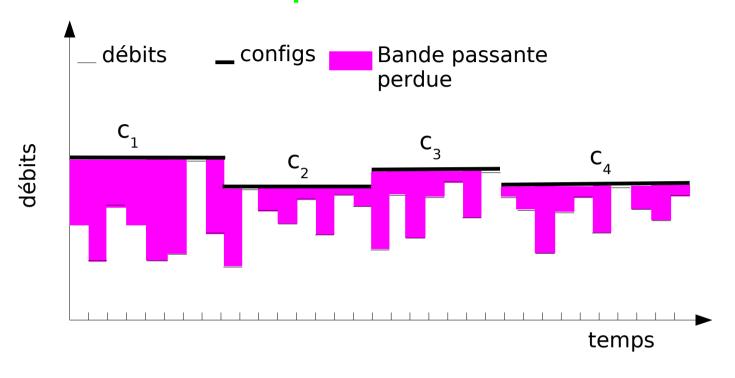
Contraintes sur les réservations de bande passante

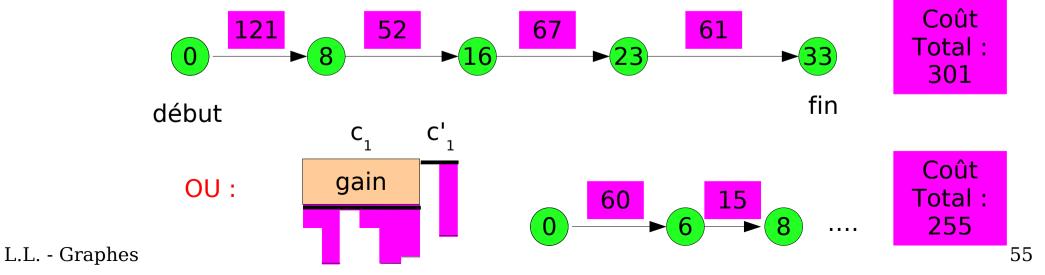
- M : Nombre de configs c_i différentes limité
- P : Temps minimum entre 2 reconfigurations
 (durée min d'une configuration)

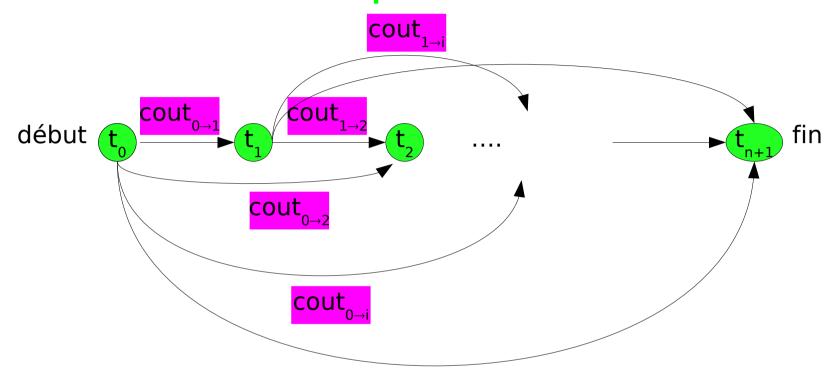












- Un sommet par date
- ∀ j > i un arc t_i → t_j: config à date t_i et reconfig à t_j
- Poids correspondant au surcoût
- Un sommet supplémentaire à la fin

Meilleure solution : coût total minimal

plus court chemin

Bellman sur GAO

Contraintes sur les réservations de bande passante

• P : Temps minimum entre 2 reconfigurations (durée min d'une configuration)

enlever les arcs i → j t.q j - i < P

M : Nombre de configs c_i différentes limité

M premières étapes de Ford-Bellman

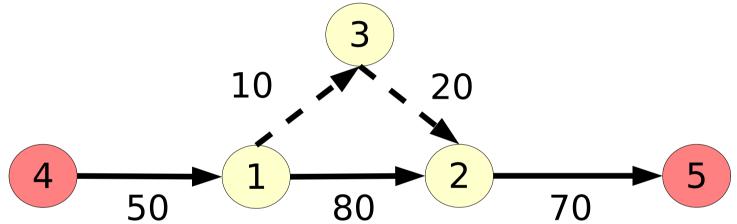
Toutes paires de sommets algorithme de Floyd-Warshall

- Graphe G=(X, U)
 N=|X|
- Dijkstra, Ford-Bellman:
 1 vers N
 C = O(N² + |U|)
- Tous vers tous avec Dijkstra O(N*C) = O(N³ + N)
- Floyd : algorithme matriciel

 $O(N^3)$

Algorithme de Floyd - Exemple

- Chemins entre toutes paires de sommets
- Idée: à l'étape k, on connait les chemins i→j optimaux ne passant que par S₁, S₂, ..., S₂



• **k=2**. Entre autres :

$$D_{45} = 50 + 80 + 70 = 200$$

$$D_{A3} = 50 + 10 = 60$$

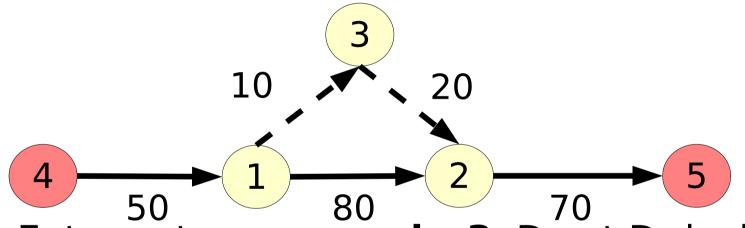
$$D_{35} = 20 + 70 = 90$$

L.L. - Graphes

59

Algorithme de Floyd - Exemple

- Chemins entre toutes paires de sommets
- Idée: à l'étape k, on connait les chemins i→j optimaux ne passant que par S₁, S₂, ..., S₂



• k=2. Entre autres :

$$D_{45} = 50 + 80 + 70 = 200$$

$$D_{43} = 50 + 10 = 60$$

$$D_{35} = 20 + 70 = 90$$

•
$$\mathbf{k=3}$$
. D_{43} et D_{35} inchangés ...
Si D_{45} ne passe pas par 3
 $D_{45}^3 = D_{45}^2 = 200$
Sinon

$$D_{45}^3 = D_{43} + D_{35} = 150$$

Algorithme de Floyd - Principe

En généralisant, pour G = (X, U)

$$\forall S_{i}, S_{j} \in X, L_{ij}^{k} = \min \{ L_{ij}^{k-1}, L_{ik}^{k-1} + L_{kj}^{k-1} \}$$

- L est une matrice NxN = |X|
- L⁰ est défini par :
 - $L^0_{ij} = D_{ij}$ si $i \neq j$ $(D_{ij} = \infty$ si l'arc $i \rightarrow j$ n'existe pas)
 - $L_{ii}^{0} = D_{ii} = 0$

• A la $N^{ième}$ étape, L contient des chemins pour les sommets S_1 à S_N , *ie* les plus courts chemins

Floyd - énoncé

Floyd(Graphe G = (X, U))(Tableaux D, A)

1-Initialisation

Pour i
$$\leftarrow$$
 1..N, Pour j \leftarrow 1..N

$$D[i,j] \leftarrow I_{ij} D[i,i] \leftarrow 0$$

$$A[i,j] \leftarrow S_i$$

$$k \leftarrow 0$$

D : distances

A: précédences

2-Itération courante k← 1..N

Pour i
$$\leftarrow$$
 1..N, Pour j \leftarrow 1..N

$$v \leftarrow D[i,k] + D[k,j]$$

$$D[i,j] \leftarrow v$$

$$A[i,j] \leftarrow A[k,j]$$

fin

Algorithme de Floyd cohérence de graphes STP

 Floyd permet de détecter les cycles de longueur négative

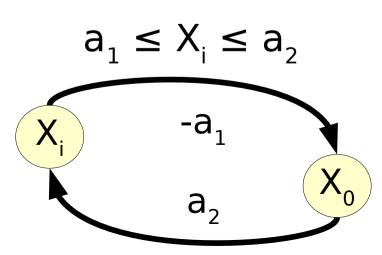
$$-L_{ii}^{N} < 0$$

- Vérifier la cohérence des problèmes temporels simples (STP)
 - ensembles de contraintes de dates/durées
 - correspondent à un graphe de distances

$$X_{j} - X_{i} \leq a$$

$$X_{j} - X_{j}$$

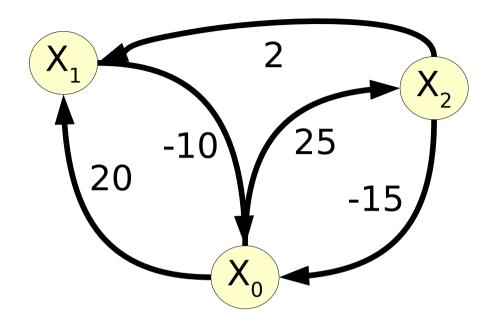
$$A$$
L.L. - Graphes



STP - Exemple

• contraintes C:

$$\begin{cases} c_1: 10 \le X_1 \le 20 \\ c_2: 15 \le X_2 \le 25 \\ c_3: X_1 - X_2 \le 2 \end{cases}$$



- Y a t il une date possible pour X₁ et X₂ respectant les contraintes ? pas de cycle négatif!
- **Application**: si X_1 et X_2 sont des niveaux d'eau estimés sur des parcelles lors d'une inondation (c_1 et c_2) et que il y a des flux d'eau (c_3), y a t il des