
Using HLA to provide a Collaborative Multi Agent Virtual Prototyping platform
Valéry Raulet
Vincent Rodin
Alexis Nédélec

Software Engineering Laboratory (LI2)
École National d’Ingénieurs de Brest (ENIB)

Parvis Blaise Pascal
Brest, 29200, France
(033) 2 98 05 66 31

raulet@enib.fr, rodin@enib.fr, nedelec@enib.fr

Keywords:
High Level Architecture, Multi Agent System, Collaborative Prototyping,

Distributed Virtual Environment, Virtual Reality

ABSTRACT : In a previous paper[6], we presented how we provided a dynamic object model with the High Level Architecture
(HLA). In this paper, we present how we incorporate the HLA framework into oRisDis, our multi agent oriented simulation plat-
form, and the dynamic object model. Our platform adds an additional Run-Time Infrastructure, called oRisRTI, which provides
a framework between agents and the HLA RTI. While the HLA RTI provides necessary services for data exchanges between
platforms, the oRisRTI provides services specific to multi agent collaboration and higher level services (dead-reckoning, static
and dynamic state update management, ...).

We will also emphasize difficulties for integrating real/ghost agent model management into the HLA exchanges and how
benefits could be gained into adding further functionalities to the HLA architecture.

1. Introduction

Originally developed for single user applications, our
platform called oRis is being extended to provide collab-
orative prototyping. Lots of solutions exist for allowing
sharing between hosts (PVM, MPI, Linda, CORBA, . . . ).
We made the choice of the High Level Architecture (HLA)
because of its design and its standardization for distributed
simulations.

Indeed, HLA uses an object-oriented model. Our plat-
form is multi agent oriented and this coupling can be easily
made according to object and agent similarities.

This paper describes how we realized the interconnec-
tion between our multi agent platform and the HLA archi-
tecture. Firstly, we briefly present our platform, then needs
for communicative platform are described and solutions re-
tained are shown.

2. The oRisDis platform

oRisDis, our distributed platform, consists of three
main components. First, oRis is the core architecture which
provides a multi agent language and a simulation engine
for agents described in this language. The second compo-
nent, ARéVi, is a 3D rendering API plugged around the
oRis core. It provides many capabilities for rendering and
external interactions. The last one, oRisDis is our work in
progress to provide distributed facilities to the oRis/ARéVi

environment. Based on HLA, it provides data sharing. This
data sharing is done the most transparently as possible to
avoid bothering the designer with distribution problems.

2.1 oRis environment

oRis1[2], the core component, is a Multi Agent System
(MAS) developed in our laboratory. Built for many plat-
forms (IA32 Linux, PPC Linux, SGI Irix and Windows),
oRis provides an agent language and a simulation platform.

oRis provides a original prototyping tool. Indeed, in-
stead of designing a prototype in phases between off-line
and on-line design, oRis provides enough flexibility to fully
modify prototype during simulation.

2.1.1 Prototyping

Prototyping consists in designing a model as expected.
Classical prototyping is a round trip between off-line de-
sign and on-line tests. This way of acting tends to disap-
pear in favor of complete numerical design. We want to go
a step further by allowing its designer to modify its model
while testing. Figure 1 shows interactive prototyping where
adjustment are now done on-line.

1http://www.enib.fr/˜harrouet

http://www.enib.fr/~harrouet


prototype

Prototype

Generate
first prototype

prototype
Test

YesNo

realized

Adjust Adjust prototype
online

tests ?
Satisfactory

Usage / perfectingDesign

Figure 1. Interactive prototyping approach (from [2])

2.1.2 An agent language

Based on a syntax similar to C++ and Java, oRis is a lan-
guage very close to object oriented languages with few
more features.

Features provided by this language are agent behav-
ior, the main() module, agent communication capabili-
ties, and dynamic behavior evolving.

In the main() module, we can describe the agent’s
behavior. At the simulation startup, this module is called
and represent the agent’s entry point. Then, this module is
periodically called, boundlessly, by the simulation engine.

Agent communication capabilities allows agents to
share data. This can be simple data such as entity state
or more complex information described in ACL2 language.
ACL is a formalized way for communicating between
agents. FIPA3 or KQML4 are some of these ACL[4].

Dynamic evolving is a specificity of our platform. In-
deed, during execution, agents can evolve in a way that was
unpredicted by its designer. The whole language is avail-
able at runtime and is interpreted. We call this a dynamic
language.

2.1.3 A simulation engine

Designed for simulating systems behaviors, the platform
provides a simulation engine for making live agents. A fine
tuned scheduler has been designed to avoid bias and thus
each agent lives with fairness to its neighbor.

The aim of the engine is to simulate each agent behav-
ior without privileging one of them and to provide complete
access to the agent code and the oRis language. This allows
an user to modify the application while running.

2.1.4 ARéVi Toolkit

Based on oRis core component, ARéVi[3]5, our Virtual Re-
ality Toolkit provides a 3D graphical environment. It al-
lows entity representation in three dimensions and user in-
teraction with adapted devices.

It can be used as a stand-alone tool for rapid prototyp-
ing or can be embedded into an existing system. Based on
notions of entities, scene (group of entities) and viewers, it
handles various features such as animation, level of details,
lightning, collision detection. . .

Interaction is provided through usual or VR periph-
erals like 3D mice, force feedback joystick, flock of birds,
Phantom and so on.

2.2 oRisDis Multiuser Platform

oRisDis is made of two parts: a plug-in C++ module for
oRis and some oRis code. The module provides bindings
between oRis language and the C++ HLA API.

The oRis code, called oRisRTI, is another RTI de-
signed specifically for our platform. Agents (real or ghost)
living onto the platform can interact with this oRisRTI. This
latter is in charge of translating agent calls into HLA calls.
Conversely, it translates HLA calls into oRis agent module
calls. This is shown on figure 2 and is detailed in the next
section.

3. Distributed agent platform needs

HLA is designed for providing a useful generic API
for distributed simulations. It provides different services
which can be used for many purpose. Despite its gener-
icity, we have already shown that HLA is not sufficiently
opened for every uses[6].

The oRisRTI provides more specific services, based
on HLA generic ones, to our platform.

3.1 Ghost/Real interaction paradigm

Our platform is based on a real/ghost interaction paradigm.
A real entity is the one living on its creator platform while
ghost entities are representative from this real entity. Real

2ACL : Agent Communication Language
3FIPA : Foundation for Intelligent Physical Agents
4KQML : Knowledge Query and Manipulation Language
5ARéVi, Atelier de Réalité Virtuelle



entity does support a full realistic behavior which can
be computer driven or user driven. On the over hand,
the ghosts entities does embed a “lighter” behavior which
mimics real behavior.

Agent

Agent

Agent

H
LA

/R
TI

oR
is

R
TI

oRis / federate host

oRis / federate host

oRis / federate host

Figure 2. Double RTI infrastructure

Dead reckoning[7] is an example of such a behavior.
The ghost behavior is to reflect more simply its real move-
ment. This is done by exchanging location, velocity and ac-
celeration. Ghost tries to mimic its real entity, graphically,
by moving on a near path. On the other hand, real entity can
have a very complex behavior resulting in its move. Rea-
soning is done once but location is the same on different
hosts.

More than that, we also want to be able to interact
with ghosts. While they do embed real behavior of its real
entity, interactions must be reflected to its real entity which
is in charge of taking the correct action.

This two way action can be problematic in case of a
dynamic entity state update. This is explained in next sub-
sections.

3.1.1 Bidirectional vs unidirectional interaction

In interactive distributed simulations, environment state is
maintained by exchanging entity state attributes which re-
flect entity representation (principally visual and auditive).
Interaction between entities – or between users – is done
by exchanging interactions instances (in HLA terms). In
distributed simulations, this is not problematic since entity
is “owned” by one user. You can’t move its entity without
asking him to do so !

In our prototyping platform, an entity is not specifi-
cally owned by its creator. Another user must be able to

interact with it. Interactions can be really bothering due to
latency[5]. Ghost agents can be modified locally while re-
ferring its action to its real entity. This is not problematic
for single shot action but is more difficult to manage for
dynamic state modification, as inserting new properties to
agents.

3.1.2 Entity state update frequency

Entity state attributes doesn’t evolve identically. Some of
them have a static state evolving – one shot – while oth-
ers have a really dynamic state evolving (entity movement,
heating color, . . . ). This can be particularly embarrassing
for our platform since interactions can occur in a two way
fashion.

A typical interaction between a ghost and its real en-
tity and between real and its ghosts representation is dis-
played on figure 3.

(3)

(5)

(5)

(1)

(5)

(2)
(4)

(4)

(4)

oRisDis 4

Real

oRisDis 3

Ghost.3

oRisDis 2

Ghost.2

oRisDis 1

Ghost.1

Figure 3. Real and ghosts interactions

A dynamic state interaction occurring on a ghost is
typically done when someone uses a manipulator to inter-
act and move a ghost entity. For example, the ghost entity
has been designed to send an interaction to its real when a
threshold (5 inches for example) is over-stepped. If a user
is moving this ghost entity 40 inches farther, eight inter-
actions are going to be sent to inform its real entity. But
during this move, real entity is going to reflect interaction
received. This results in a back and forth moving. Latency
is going to introduce delays between action being taken and
action been taken reflected by real. Figure 4 shows such a
problem.

In this example, a ghost is sending periodically up-
dates to its real associated entity. Each time this real re-
ceives a message, it decides to update itself and to send an



update to its ghost entities. But latency is such that ghost
has enough time to send many messages before receiving
any update from real entity.

On the bottom on figure 4, we display what may result
in such a situation. (1) represents the initial behavior of the
interactor and (2) represent the resultant behavior caused
by real updates.

real sending update

x=1

x=2

x=3

x=1

x=3

x=0x=0

x=1

x=2

x=3

x=3

x=2

x=1
x=2

x=1

x=2

x=2

x=3

x=2

x=2

Real

time

Ghost

a) ghost and real interactions

1

2

3

time

(1) initial ghost path

(2) ghost path

x 
ax

is

b) ghost path evolving in time

Figure 4. Dynamic state attribute evolving with real entity
updates

Solution When a ghost modifies a dynamic attribute
state, two types of updates can interfere.

First one is caused by its own updates sent back by
real entity. This problem is simply solved by transmitting
its updates with an identifier specifying who is the origina-
tor of this update. When a ghost receives an update origi-
nating from it, it simply discards this update.

Second one occurs when two (or more) users try to in-
teract on ghost entities representing the same real one. We

choosed a simple solution to this problem. When real entity
receives updates from different ghosts, an average is com-
puted and the shift position is sent to all ghosts. In this case,
ghosts displacement is hindered by other users actions.

3.2 Communication between agents

Participating agents can be intelligent agents[8]. This
means that communication can occur between agents. This
is modeled by point to point or broadcast communication
between agents. Needs are different for each one.

In unicast communication, the destination agent is
known. This is not problematic since ghost representing
entity can forward the message to its real entity.

In broadcast communication, the problem is that emit-
ter agent doesn’t know who has to receive the message. To
answer this point, we implemented a specific agent – in the
oRisRTI – which is sensitive to every messages that can be
broadcasted. Figure 5 display agent organization for mes-
sages exchange.

On top of the figure, an agent broadcast a message
(agent 1) to all the agent sensitive to this message. Real
agent present on this platform receives the message (shown
with a dashed circle around the agent). Ghost agents are not
sensitive to any broadcast message but the specific agent
(agent 2) – in the oRisRTI – also receives this message.
Then, this message is sent to the HLA RTI through an in-
teraction (Send Interaction With Region).

H
LA

/R
TI

oRisRTI

oRisRTI

agent 1

agent 2

agent 3

agent 4

Figure 5. Infrastructure for agent communication exchange

On the other side, an agent (agent 3) receives a spe-
cific message originating from the HLA RTI (Receive
Interaction). It extracts data and recreates the mes-
sage. This message is then broadcasted by a local agent



onto this platform (agent 4 receives this message).

Solution details A specific interaction class has been
designed for messages broadcasted by agents. Each
oRisRTI subscribes to this interaction class and associates
a region with it (Subscribe Interaction Class
With Region). A specific routing space exists for this
interaction.

On each platform, when an agent become sensitive or
insensitive to a type of message, it informs the oRisRRI
agent (agent 2 or 3 on figure 5). This latter uses this infor-
mation to create, modify, or remove an extent for the region
associated to this interaction. Subscription is modified ac-
cordingly.

Extent associated with a message is maintained into a
table (message name, extent). This information has to be
agreed between each federate. Since new messages can be
created during execution, this agreement is done by sending
an interaction with a specific region that is used for adding
a new entry into the table (maintenance interaction). By
acting this way, we hope that two platforms will not send
the same message creation simultaneously.

This solution avoids to send interactions to federate
that are not interested by this agent’s message type.

3.3 Dynamic evolving of agents

The oRis platform is able to add, modify or remove an
agent while executing. This feature is so important that it
must remain available in the collaborative one. This mean
that the object model can be altered while needed. HLA
provides a fixed unmutable object model.

Our retained solution was presented in a previous
paper[6]. The oRisRTI is in charge of encapsulating the
oRis object model into the HLA object model. Initial oRis
and HLA object model are identical. But when new at-
tributes or classes are added to the oRis object model, this
is hidden to HLA by using a generic attribute and a specific
protocol.

The generic attribute is associated with the new oRis
added attribute. A specific protocol is used for platform
agreement. When a new attribute , for example foo, is
added to an oRis instance, each platform has to agree that it
is related to the same attribute. This encapsulation realizes
association between the attribute name (only relevant for
oRisDis) and the attribute handle 1 from instance handle
23 from the HLA.

This solution keeps some services available but we
are examinating a new solution which require to modify
the HLA API to introduce method to allow object model

modifications. This is currently being done on the CERTI
RTI6[1].

4. Conclusion

HLA is really an interesting infrastructure for a lot of
projects. It provides a sufficiently generic API for target-
ing different applications. Our project shows how HLA can
adapt to different needs as presented in this paper.

HLA is a first layer for us and more functionalities
have to be added to provide a more useful API. Each do-
main may have to provide a more specific layer adapted to
their needs to improve interoperability.

But, as always an API is never sufficiently open for
every usage. This is also the case with our platform since
static object model is not enough. We are working on
adding new API methods for allowing HLA to modify its
object model during execution.

Acknowledgements

We would like to thank the CERTI team who released
their API to the GPL license. This allows small teams as us
to use complex API in research projects.

References
[1] B. BRÉHOLÉE AND P. SIRON, CERTI: Evolutions of

the ONERA RTI Prototype, in Fall Simulation Inter-
operability Workshop (02F-SIW-018), Orlando, USA,
September 8–13 2002.

[2] F. HARROUET, oRis : in immersion through the
language for virtual prototyping based on multi
agents (in French), PhD thesis, Université de Bre-
tagne Occidentale, Equipe d’accueil 2215, Laboratoire
d’Informatique Industrielle, Décembre 2000.

[3] F. HARROUET, P. REIGNIER, AND J. TISSEAU, Mul-
tiagent systems and virtual reality for interactive protot
yping, vol. 3, ISAS’99, Orlando (USA), July 31 - Au-
gust 4 1999, pp. 50–57.

[4] A. NÉDÉLEC, P. REIGNIER, AND V. RODIN, Collabo-
rative Prototyping in Distributed Virtual Reality Using
Agent Communication Language, in IEEE SMC’2000,
Nashville, USA, Octobre 2000.

[5] V. RAULET, A. NÉDÉLEC, AND V. RODIN, Coupling
HLA with a MAS based DVR environment, in IASTED
International Conference – Applied Informatics, Inns-
bruck, Austria, February 18–21 2002, pp. 239–242.

[6] V. RAULET, V. RODIN, AND A. NÉDÉLEC, oris-
dis: using hla and dynamic features of oris multi-
agent platform for cooperative prototyping in virtual

6http://www.cert.fr/CERTI/

http://www.cert.fr/CERTI/


environments, in European Simulation Interoperabil-
ity Workshop 2002 (02E-SIW-022), London, UK, June
2002, SISO.

[7] S. K. SINGHAL, Effective Remote Modeling in Large-
Scale Distributed Simulation and Visualization Envi-
ronments, PhD thesis, Thesis, Department of Com-
puter Science, Stanford University, Août 1996.

[8] M. WOOLDRIDGE, Multiagent Systems – A modern
Approach to Distributed Artificial Intelligence, Mas-
sachusetts Institute of Technology, 1999, ch. Intelligent
Agents, pp. 27–77.

Author Biographies

VALÉRY RAULET is a PhD student in Computer
Science at the École Nationale d’Ingénieurs de Brest

(France). His work aims at providing a toolbox for building
distributed and collaborative applications.

VINCENT RODIN is born on February 28 1966.
Lecturer at the École Nationale d’Ingénieurs de Brest
(France), he’s currently working on image processing, vir-
tual reality and computer simulation of biologic processes.

ALEXIS NÉDÉLEC is born on June 03 1961. Lec-
turer at the École Nationale d’Ingénieurs de Brest (France),
he’s currently working on Agent Communication Lan-
guage (ACL) in Multi Agent System for collaborative ap-
plications development in virtual reality.


	Introduction
	The oRisDis platform
	oRis environment
	Prototyping
	An agent language
	A simulation engine
	ARéVi Toolkit

	oRisDis Multiuser Platform

	Distributed agent platform needs
	Ghost/Real interaction paradigm
	Bidirectional vs unidirectional interaction
	Entity state update frequency

	Communication between agents
	Dynamic evolving of agents

	Conclusion

