

Wireless Sensor Network based Monitoring, Cellular Modeling and Simulations for Environment

Onil Nazra Persada Goubier, Hiep Xuan Huynh, Tuyen Phong Truong, Mahamadou Traore and the SAMES group

SAMES Group

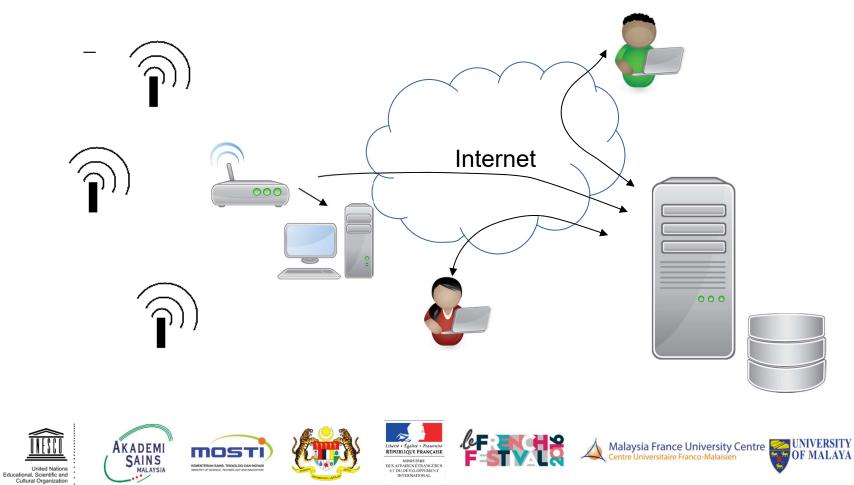
- SAMES (Stic Asia Modeling for Environment and Simulation) Group
 - Researchers
 - France:
 - University of Bretagne Occidentale / LabSTICC as leader (B. Pottier, V. Rodin, B. Nsom, L. Esclade), CIRELA Paris (O. Goubier) IRD Paris (S. Stinckwich)
 - Vietnam:
 - Cantho University (HX Huynh, BH Lam), IFI Hanoi (Vinh)
 - Indonesia
 - BPPT Jakarta (Udrekh, Hafidz Muslim), DRR Foundation Indonesia (Surono)
 - Objectives:
 - to develop software tools to ease wireless distributed sensing and data integration in relation with critical physical processes.

Physical Phenomena

Physical Phenomena:

- water flow, flooding, pollution, volcano, insect invasion, ...

- Environment and climate change issues
 - Reduce Risks of natural and environmental disasters
 - Knowledge on physical phenomena
 - Real time monitoring
 - Life in harmony with the environment


- Wireless Sensor Networks, an overview
- Geo-localized Cellular Modeling and Simulation
 - PickCell/Netgen modeling tools
- 2 cases:
 - Line of sight
 - Desert locus invasion
- Current cooperations
- Potential cooperations

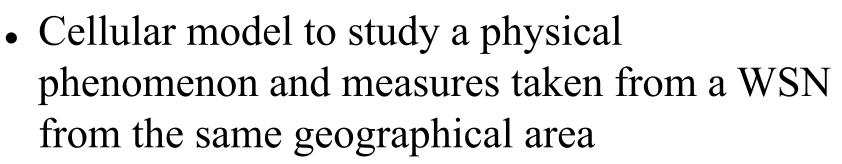
6

• Wireless Sensor Networks

- A WSN measures values representing the state of a physical system
 - Distributed measurements for physical phenomena
 - Space and time
- Sensors:
 - Measure values,
 - ex. flood monitoring and warning:
 - water level, flow rate, ...

8

- Networks
 - mesh, hierarchical, ...
 - ZigBee, SigFox, LoRa, Cellular IoT, LTE-M, GPRS, ...
 - Low cost, low power and low rate communication



- Information System (IS)
 - Collected data to IS \rightarrow Database server
 - External sources
- Data used to:
 - Monitoring, Modelling, Simulation, Forecasting, Decision Support
- Dissemination:
 - Web technology, handphone applications

Geo-localized Cellular Modelling

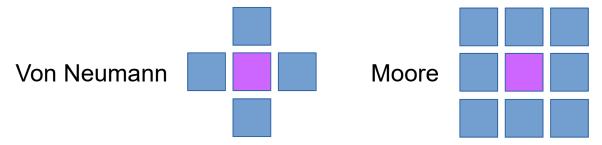
- Coverage:
 - Sensor locations
 - Number of Sensors
 - Periodicity

Geo-localized Cellular Modelling

- Physical evolution of this phenomenon
- Interaction between a physical phenomenon and a WSN


Radio Signal Propagattion Based on Cellular Automata - Ver. 1.0 - Tuyen Phong Truong - LabSTICC, UBO Coataudor Le Relecq-Kerhuor Dourjacq Petit Paris

PickCell



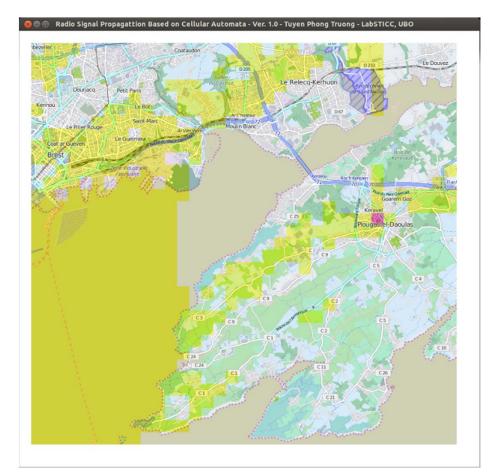
• Cellular Automata

- A cell represents a local state of a physical phenomenon
- System evolution is based on neighborhoods :
 - Von Neumann or Moore

- Communication between cells
- Rules describes how a cell changes at each time step

- Problems:
 - how to manage sensors deployments to overcome physical constraints and to get better coverage
 - And reduce cost!
 - How well sensor networks can sense a physical phenomena in an area
 → network sensing coverage
- Collective measures:
 - Sensor positions, number, precision
 - Radio propagation,
 - Radio technology
 - Ground contour, ...

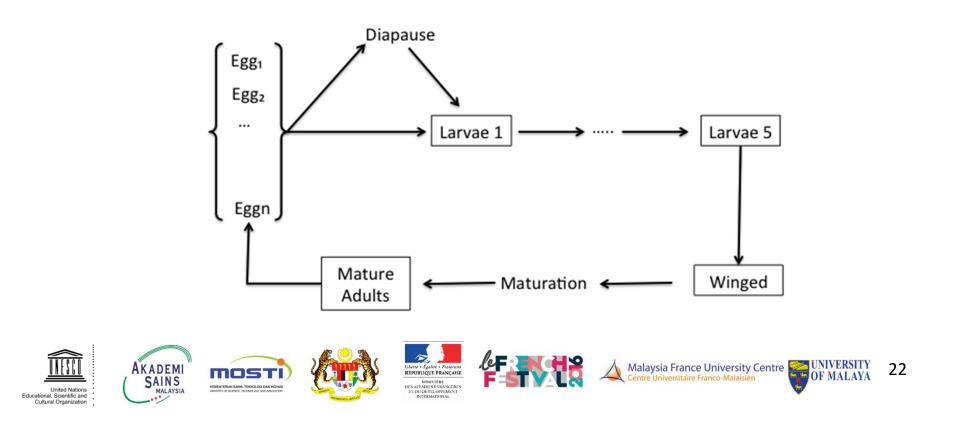
- Radio propagation
 - a physical phenomenon
 - a logical connectivity between nodes (in cell system).
- Radio propagation can be stopped or attenuated by ground topology (hills, valley).
 - Free Space Path Loss Model
 - Model with Diffraction



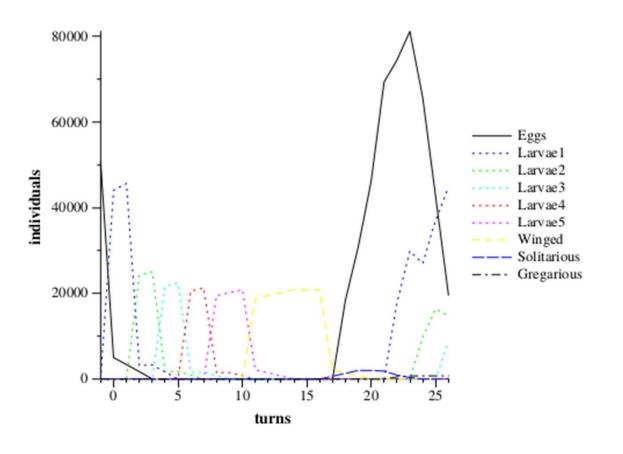
- Simulate the physical behaviour by :
 - propagating the signal inside a tree rooted at the emitter cell,
 - and covering all the space in concentric circles.
- During radio propagation,
 - the ground profile is collected into routes that are completed progressively based on positions and elevations.
 - Each cell decides if the emitter is visible or not by comparing its elevation to the received profile.

- Still much work to be done
- More parameters to take into account :
 - More obstacles
 - Number of sensors, locations
 - Radio technology : LoRa, ZigBee, ...

- Research with Senegal and Madagascar
- Desert locusts change their behavior, physiology and morphology, in response to density variations.
- This change happens on short time and space scales preferentially in breeding areas known as locusts invasion starting point
- Two different behavioral phases:
 - Solitarious :
 - individuals live in a sparse and scattered manner in Sahel countries
 - do not venture and do not affect agricultural production.
 - Gregarious :
 - responsible for considerable damage caused to crops

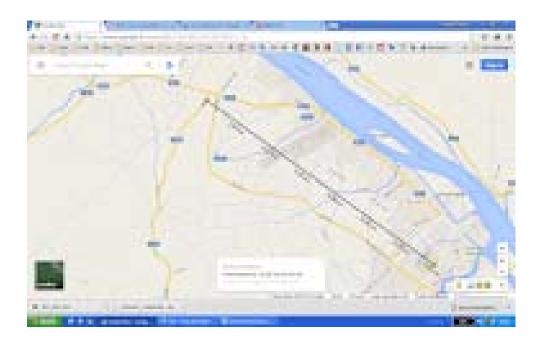

- Outbreaks happen only within specific conditions, leading to huge swarms, trying to survive by flying for other food sources and for escaping predators.
- They migrate from one area to another for a better living condition, and die if they fail to find a suitable breeding area.
- Emigration concerns winged individuals who turn to solitarious and then to gregarious before flying in a swarm.

- Desert locust physical system:
 - the locust population in their breeding area and their interactions with weather, vegetation cover and wind, evolving from eggs to adults and flying to other cells, laying eggs.

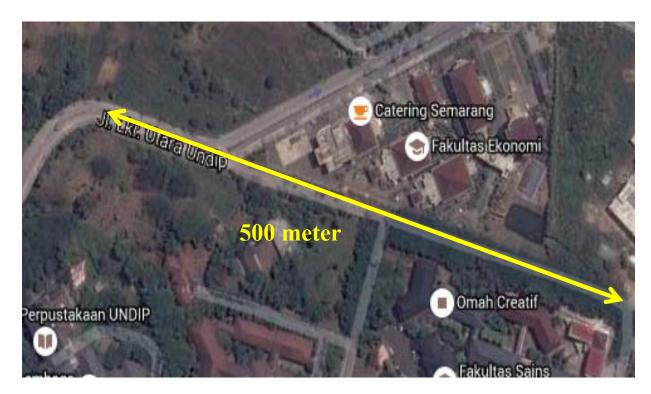


- Cell model:
 - each cell contains
 - eggs, larvae stages 1 to 5, winged, solitarious and gregarious individuals.
 - Each array is subdivided in micro states representing the corresponding individuals life cycle period.
 - Two cases:
 - local transition between micro states in a cell.
 - migration between cells

• Local transition between micro states in a cell



- Work still in progress
 - Migration of locusts
 - More parameters :
 - Weather, wind, vegetation cover, ...
 - Geo-localized with WSN
 - ...



- Next :
 - Apply line of sight computation for Indonesia and Vietnam examples
 - More applications:
 - Modeling floods : Indonesia, Vietnam, ...
 - Modeling insect invasion :
 - Vietnam, Senegal, ...

- Many cases and applications in environment, in case of green smart cities
- We are open to cooperation with additional partners

Thank you Merci Cảm ơn Terima kasih

