
file:///home/rodin/man_exec_SunOS

1 of 6 23.01.2007 21:09

System Calls exec(2)

NAME
 exec, execl, execle, execlp, execv, execve, execvp - execute
 a file

SYNOPSIS
 #include <unistd.h>

 int execl(const char *path, const char *arg0, ..., const
 char *argn, char * /*NULL*/);

 int execv(const char *path, char *const argv[]);

 int execle(const char *path, const char *arg0, ..., const
 char *argn, char * /*NULL*/, char *const envp[]);

 int execve(const char *path, char *const argv[], char *const
 envp[]);

 int execlp(const char *file, const char *arg0, ..., const
 char *argn, char * /*NULL*/);

 int execvp(const char *file, char *const argv[]);

DESCRIPTION
 Each of the functions in the exec family replaces the
 current process image with a new process image. The new
 image is constructed from a regular, executable file called
 the new process image file. This file is either an execut-
 able object file or a file of data for an interpreter. There
 is no return from a successful call to one of these func-
 tions because the calling process image is overlaid by the
 new process image.

 An interpreter file begins with a line of the form

 #! pathname [arg]

 where pathname is the path of the interpreter, and arg is an
 optional argument. When an interpreter file is executed, the
 system invokes the specified interpreter. The pathname
 specified in the interpreter file is passed as arg0 to the
 interpreter. If arg was specified in the interpreter file,
 it is passed as arg1 to the interpreter. The remaining argu-
 ments to the interpreter are arg0 through argn of the origi-
 nally exec’d file. The interpreter named by pathname must
 not be an interpreter file.

 When a C-language program is executed as a result of this
 call, it is entered as a C-language function call as fol-
 lows:

 int main (int argc, char *argv[], char *envp[]);

 where argc is the argument count, argv is an array of char-
 acter pointers to the arguments themselves, and envp is an
 array of character pointers to the environment strings. The
 argv and environ arrays are each terminated by a null
 pointer. The null pointer terminating the argv array is not
 counted in argc. The value of argc is non-negative, and if
 greater than 0, argv[0] points to a string containing the
 name of the file. If argc is 0, argv[0] is a null pointer,
 in which case there are no arguments. Applications should
 verify that argc is greater than 0 or that argv[0] is not a
 null pointer before dereferencing argv[0].

 The arguments specified by a program with one of the exec
 functions are passed on to the new process image in the
 main() arguments.

 The path argument points to a path name that identifies the
 new process image file.

 The file argument is used to construct a pathname that iden-
 tifies the new process image file . If the file argument
 contains a slash character, it is used as the pathname for
 this file. Otherwise, the path prefix for this file is

file:///home/rodin/man_exec_SunOS

2 of 6 23.01.2007 21:09

 obtained by a search of the directories passed in the PATH
 environment variable (see environ(5)). The environment is
 supplied typically by the shell. If the process image file
 is not a valid executable object file, execlp() and execvp()
 use the contents of that file as standard input to the
 shell. In this case, the shell becomes the new process
 image. In a standard-conforming application (see stan-
 dards(5)), the exec family of functions use /usr/xpg4/bin/sh
 (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

 The arguments represented by arg0... are pointers to null-
 terminated character strings. These strings constitute the
 argument list available to the new process image. The list
 is terminated by a null pointer. The arg0 argument should
 point to a filename that is associated with the process
 being started by one of the exec functions.

 The argv argument is an array of character pointers to
 null-terminated strings. The last member of this array must
 be a null pointer. These strings constitute the argument
 list available to the new process image. The value in
 argv[0] should point to a filename that is associated with
 the process being started by one of the exec functions.

 The envp argument is an array of character pointers to
 null-terminated strings. These strings constitute the
 environment for the new process image. The envp array is
 terminated by a null pointer. For execl(), execv(),
 execvp(), and execlp(), the C-language run-time start-off
 routine places a pointer to the environment of the calling
 process in the global object extern char **environ, and it
 is used to pass the environment of the calling process to
 the new process image.

 The number of bytes available for the new process’s combined
 argument and environment lists is ARG_MAX. It is
 implementation-dependent whether null terminators, pointers,
 and/or any alignment bytes are included in this total.

 File descriptors open in the calling process image remain
 open in the new process image, except for those whose
 close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)). For
 those file descriptors that remain open, all attributes of
 the open file description, including file locks, remain
 unchanged.

 The preferred hardware address tranlation size (see
 memcntl(2)) for the stack and heap of the new process image
 are set to the default system page size.

 Directory streams open in the calling process image are
 closed in the new process image.

 The state of conversion descriptors and message catalogue
 descriptors in the new process image is undefined. For the
 new process, the equivalent of:

 setlocale(LC_ALL, "C")

 is executed at startup.

 Signals set to the default action (SIG_DFL) in the calling
 process image are set to the default action in the new pro-
 cess image (see signal(3C)). Signals set to be ignored
 (SIG_IGN) by the calling process image are set to be ignored
 by the new process image. Signals set to be caught by the
 calling process image are set to the default action in the
 new process image (see signal(3HEAD)). After a successful
 call to any of the exec functions, alternate signal stacks
 are not preserved and the SA_ONSTACK flag is cleared for all
 signals.

 After a successful call to any of the exec functions, any
 functions previously registered by atexit(3C) are no longer
 registered.

 The saved resource limits in the new process image are set
 to be a copy of the process’s corresponding hard and soft
 resource limits.

file:///home/rodin/man_exec_SunOS

3 of 6 23.01.2007 21:09

 If the ST_NOSUID bit is set for the file system containing
 the new process image file, then the effective user ID and
 effective group ID are unchanged in the new process image.
 If the set-user-ID mode bit of the new process image file is
 set (see chmod(2)), the effective user ID of the new process
 image is set to the owner ID of the new process image file.
 Similarly, if the set-group-ID mode bit of the new process
 image file is set, the effective group ID of the new process
 image is set to the group ID of the new process image file.
 The real user ID and real group ID of the new process image
 remain the same as those of the calling process image. The
 effective user ID and effective group ID of the new process
 image are saved (as the saved set-user-ID and the saved
 set-group-ID for use by setuid(2).

 If the effective user-ID is root or superuser, the set-
 user-ID and set-group-ID bits will be honored when the pro-
 cess is being controlled by ptrace().

 Any shared memory segments attached to the calling process
 image will not be attached to the new process image (see
 shmop(2)). Any mappings established through mmap() are not
 preserved across an exec. Memory mappings created in the
 process are unmapped before the address space is rebuilt for
 the new process image. See mmap(2).

 Memory locks established by the calling process via calls to
 mlockall(3C) or mlock(3C) are removed. If locked pages in
 the address space of the calling process are also mapped
 into the address spaces the locks established by the other
 processes will be unaffected by the call by this process to
 the exec function. If the exec function fails, the effect on
 memory locks is unspecified.

 If _XOPEN_REALTIME is defined and has a value other than -1,
 any named semaphores open in the calling process are closed
 as if by appropriate calls to sem_close(3RT)

 Profiling is disabled for the new process; see profil(2).

 Timers created by the calling process with timer_create(3RT)
 are deleted before replacing the current process image with
 the new process image.

 For the SCHED_FIFO and SCHED_RR scheduling policies, the
 policy and priority settings are not changed by a call to an
 exec function.

 All open message queue descriptors in the calling process
 are closed, as described in mq_close(3RT).

 Any outstanding asynchronous I/O operations may be can-
 celled. Those asynchronous I/O operations that are not can-
 celed will complete as if the exec function had not yet
 occurred, but any associated signal notifications are
 suppressed. It is unspecified whether the exec function
 itself blocks awaiting such I/O completion. In no event,
 however, will the new process image created by the exec
 function be affected by the presence of outstanding asyn-
 chronous I/O operations at the time the exec function is
 called.

 The new process also inherits the following attributes from
 the calling process:

 o nice value (see nice(2))

 o scheduler class and priority (see priocntl(2))

 o process ID

 o parent process ID

 o process group ID

 o task ID

 o supplementary group IDs

 o semadj values (see semop(2))

file:///home/rodin/man_exec_SunOS

4 of 6 23.01.2007 21:09

 o session membership (see exit(2) and signal(3C))

 o real user ID

 o real group ID

 o project ID

 o trace flag (see ptrace(2) request 0)

 o time left until an alarm clock signal (see alarm(2))

 o current working directory

 o root directory

 o file mode creation mask (see umask(2))

 o file size limit (see ulimit(2))

 o resource limits (see getrlimit(2))

 o tms_utime, tms_stime, tms_cutime, and tms_cstime (see
 times(2))

 o file-locks (see fcntl(2) and lockf(3C))

 o controlling terminal

 o process signal mask (see sigprocmask(2))

 o pending signals (see sigpending(2))

 o processor bindings (see processor_bind(2))

 o processor set bindings (see pset_bind(2))

 A call to any exec function from a process with more than
 one thread results in all threads being terminated and the
 new executable image being loaded and executed. No destruc-
 tor functions will be called.

 Upon successful completion, each of the functions in the
 exec family marks for update the st_atime field of the file.
 If an exec function failed but was able to locate the pro-
 cess image file, whether the st_atime field is marked for
 update is unspecified. Should the function succeed, the pro-
 cess image file is considered to have been opened with
 open(2). The corresponding close(2) is considered to occur
 at a time after this open, but before process termination or
 successful completion of a subsequent call to one of the
 exec functions. The argv[] and envp[] arrays of pointers and
 the strings to which those arrays point will not be modified
 by a call to one of the exec functions, except as a conse-
 quence of replacing the process image.

 The saved resource limits in the new process image are set
 to be a copy of the process’s corresponding hard and soft
 limits.

RETURN VALUES
 If a function in the exec family returns to the calling pro-
 cess image, an error has occurred; the return value is -1
 and errno is set to indicate the error.

ERRORS
 The exec functions will fail if:

 E2BIG The number of bytes in the new process’s argument list
 is greater than the system-imposed limit of {ARG_MAX}
 bytes. The argument list limit is sum of the size of
 the argument list plus the size of the environment’s
 exported shell variables.

 EACCES
 Search permission is denied for a directory listed in
 the new process file’s path prefix; the new process
 file is not an ordinary file; or the new process file
 mode denies execute permission.

file:///home/rodin/man_exec_SunOS

5 of 6 23.01.2007 21:09

 EAGAIN
 Total amount of system memory available when reading
 using raw I/O is temporarily insufficient.

 EFAULT
 An argument points to an illegal address.

 EINTR A signal was caught during the execution of one of the
 functions in the exec family.

 ELOOP Too many symbolic links were encountered in translat-
 ing path or file.

 ENAMETOOLONG
 The length of the file or path argument exceeds
 {PATH_MAX}, or the length of a file or path component
 exceeds {NAME_MAX} while {_POSIX_NO_TRUNC} is in
 effect.

 ENOENT
 One or more components of the new process path name of
 the file do not exist or is a null pathname.

 ENOLINK
 The path argument points to a remote machine and the
 link to that machine is no longer active.

 ENOTDIR
 A component of the new process path of the file prefix
 is not a directory.

 The exec functions, except for execlp() and execvp(), will
 fail if:

 ENOEXEC
 The new process image file has the appropriate access
 permission but is not in the proper format.

 The exec functions may fail if:

 ENAMETOOLONG
 Pathname resolution of a symbolic link produced an
 intermediate result whose length exceeds {PATH_MAX}.

 ENOMEM
 The new process image requires more memory than is
 allowed by the hardware or system-imposed by memory
 management constraints. See brk(2).

 ETXTBSY
 The new process image file is a pure procedure (shared
 text) file that is currently open for writing by some
 process.

USAGE
 As the state of conversion descriptors and message catalogue
 descriptors in the new process image is undefined, portable
 applications should not rely on their use and should close
 them prior to calling one of the exec functions.

 Applications that require other than the default POSIX
 locale should call setlocale(3C) with the appropriate param-
 eters to establish the locale of thenew process.

 The environ array should not be accessed directly by the
 application.

ATTRIBUTES
 See attributes(5) for descriptions of the following attri-
 butes:

ATTRIBUTE TYPE	ATTRIBUTE VALUE
_____________________________	_____________________________
Interface Stability	Standard
_____________________________	_____________________________
MT-Level	execle() and execve() are
	Async-Signal-Safe
_____________________________	_____________________________

file:///home/rodin/man_exec_SunOS

6 of 6 23.01.2007 21:09

SEE ALSO
 ksh(1), ps(1), sh(1), alarm(2), brk(2), chmod(2), exit(2),
 fcntl(2), fork(2), getrlimit(2), memcntl(2), mmap(2),
 nice(2), priocntl(2), profil(2), semop(2), shmop(2), sig-
 pending(2), sigprocmask(2), times(2), umask(2), lockf(3C),
 ptrace(2), setlocale(3C), signal(3C), system(3C),
 timer_create(3RT), a.out(4), attributes(5), environ(5),
 standards(5)

WARNINGS
 If a program is setuid to a user ID other than the
 superuser, and the program is executed when the real user ID
 is super-user, then the program has some of the powers of a
 super-user as well.

SunOS 5.9 Last change: 20 Dec 2001

