lof 6

System Cal | s exec(2)

exec, execl, execle, execlp, execv, execve, execvp - execute
afile

SYNOPSI S

#i ncl ude <uni std. h>

i nt execl (const char *path, const char *argO, ..., const
char *argn, char * [*NULL*/);

i nt execv(const char *path, char *const argv[]);

i nt execle(const char *path, const char *argO, ..., const
char *argn, char * /*NULL*/, char *const envp[]);

i nt execve(const char *path, char *const argv[], char *const
envp[]);

i nt execlp(const char *file, const char *argO, ..., const
char *argn, char * /*NULL*/);

i nt execvp(const char *file, char *const argv[]);

DESCRI PTI ON

Each of the functions in the exec famly replaces the
current process imge wth a new process inmage. The new
image is constructed froma regular, executable file called
the new process inmage file. This file is either an execut-
able object file or a file of data for an interpreter. There
is no return froma successful call to one of these func-
tions because the calling process image is overlaid by the
new process i mage

An interpreter file begins with a line of the form

#! pat hname [arg]

where pathnanme is the path of the interpreter, and arg is an
opti onal argunent. When an interpreter file is executed, the
system invokes the specified interpreter. The pathnane
specified in the interpreter file is passed as arg0 to the
interpreter. If arg was specified in the interpreter file,
it is passed as argl to the interpreter. The remining argu-
ments to the interpreter are arg0 through argn of the origi-
nally exec’'d file. The interpreter named by pathnane nust
not be an interpreter file.

When a Clanguage programis executed as a result of this
call, it 1is entered as a C|language function call as fol-
| ows:

nt main (int argc, char *argv[], char *envp[]);

where argc is the argunent count, argv is an array of char-
acter pointers to the arguments thenselves, and envp is an
array of character pointers to the environment strings. The
argv and environ arrays are each termnated by a nul
pointer. The null pointer term nating the argv array is not
counted in argc. The value of argc is non-negative, and if
greater than 0, argv[0] points to a string containing the
nane of the file. If argc is O, argv[0] is a null pointer,
in which case there are no argunents. Applications should
verify that argc is greater than 0 or that argv[0] is not a
nul | pointer before dereferencing argv[0].

The argunents specified by a programwith one of the exec
functions are passed on to the new process image in the
mai n() argunments.

The path argunent points to a path name that identifies the
new process inmage file.

The file argunment is used to construct a pathnane that iden-
tifies the new process image file . If the file argunent
contains a slash character, it is used as the pathname for
this file. Oherwise, the path prefix for this fileis

Tiie//inome/roain/man_exec_sunOS

23.01.2007 2109

2 of 6

obtained by a search ot the directories passed In the PATH
environment variable (see environ(5)). The environment is
supplied typically by the shell. If the process inmage file
is not a valid executable object file, execlp() and execvp()
use the contents of that file as standard input to the
shell. In this case, the shell becones the new process
imge. In a standard-conformng application (see stan-
dards(5)), the exec family of functions use /usr/xpg4/bin/sh
(see ksh(1)); otherw se, they use /usr/bin/sh (see sh(1)).

The argunents represented by arg0... are pointers to null-
termnated character strings. These strings constitute the
argunment |ist available to the new process image. The |Iist

is termnated by a null pointer. The arg0 argunent shoul d
point to a filenane that is associated with the process
being started by one of the exec functions.

The argv argunment is an array of character pointers to
null-termnated strings. The |ast nenber of this array nust
be a null pointer. These strings constitute the argunent
list available to the new process image. The value in
argv[0] should point to a filename that is associated wth
the process being started by one of the exec functions.

The envp argunent is an array of character pointers to

nul | -termn nated strings. These strings constitute the
environnent for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(),

execvp(), and execlp(), the GClanguage run-time start-off
routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it
is used to pass the environment of the calling process to
the new process image.

The nunber of bytes available for the new process’s conbi ned
ar gument and envi r onment lists is ARG MAX. It is
i npl emrent ati on-dependent whether null termnators, pointers,
and/ or any alignnent bytes are included in this total.

File descriptors open in the calling process image remain
open in the new process inmage, except for those whose

cl ose-on-exec flag FD CLOEXEC is set; (see fcntl(2)). For
those file descriptors that remain open, all attributes of
the open file description, including file |locks, remain
unchanged.

The preferred hardware address tranl ation si ze (see
mencnt!l (2)) for the stack and heap of the new process inage
are set to the default system page size.

Directory streans open in the calling process inmage are
closed in the new process inage.

The state of conversion descriptors and nessage catal ogue
descriptors in the new process inage is undefined. For the
new process, the equival ent of:

setl ocal e(LC_ALL, "C")
is executed at startup.

Signals set to the default action (SIGDFL) in the calling
process inage are set to the default action in the new pro-
cess image (see signal (30)). Signals set to be ignored
(SIGIGN) by the calling process imge are set to be ignored
by the new process inmage. Signals set to be caught by the
calling process inmage are set to the default action in the
new process inmge (see signal (3HEAD)). After a successful
call to any of the exec functions, alternate signal stacks
are not preserved and the SA ONSTACK flag is cleared for all
si gnal s.

After a successful call to any of the exec functions, any
functions previously registered by atexit(3C) are no | onger
regi stered.

The saved resource limts in the new process inmage are set
to be a copy of the process’s correspondi ng hard and soft
resource limts.

Tiie//inome/roain/man_exec_sunOS

23.01.2007 2109

30f 6

IT the ST_NOSUID bit 1s set for the ti1le system contal ning
the new process inage file, then the effective user ID and
effective group ID are unchanged in the new process inmage
If the set-user-1D node bit of the new process image file is
set (see chnod(2)), the effective user 1D of the new process
imge is set to the owner ID of the new process image file.
Simlarly, if the set-group-1D nbde bit of the new process
image file is set, the effective group ID of the new process
image is set to the group ID of the new process inmage file.
The real user ID and real group ID of the new process image
remai n the sane as those of the calling process image. The
effective wuser ID and effective group I D of the new process
image are saved (as the saved set-user-ID and the saved
set-group-1D for use by setuid(2).

If the effective user-IDis root or superuser, the set-
user-1D and set-group-ID bits will be honored when the pro-
cess is being controlled by ptrace().

Any shared nenory segments attached to the calling process
imge wll not be attached to the new process inmmge (see
shnop(2)). Any mappi ngs established through mmap() are not
preserved across an exec. Menory nmappings created in the
process are unmapped before the address space is rebuilt for
the new process i nmage. See mmap(2).

Menory | ocks established by the calling process via calls to
m ockal | (3C) or mock(3C) are renpved. If |ocked pages in
the address space of the calling process are also nmapped
into the address spaces the |ocks established by the other
processes will be unaffected by the call by this process to
the exec function. |If the exec function fails, the effect on
menory | ocks is unspecified.

If _XOPEN REALTIME is defined and has a value other than -1
any named semaphores open in the calling process are closed
as if by appropriate calls to semcl ose(3RT)

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with tiner_create(3RT)
are deleted before replacing the current process imge with
the new process i nmage

For the SCHED FI FO and SCHED RR scheduling policies, the
policy and priority settings are not changed by a call to an
exec function

Al'l open message queue descriptors in the <calling process
are closed, as described in ng_cl ose(3RT).

Any out st andi ng asynchronous 1/O operations nay be can-
celled. Those asynchronous |1/O operations that are not can-
celed will conplete as if the exec function had not yet
occurred, but any associated signal notifications are
suppressed. It is wunspecified whether the exec function
itself blocks awaiting such 1/O conpletion. In no event,
however, will the new process inmage created by the exec
function be affected by the presence of outstanding asyn-
chronous 1/ O operations at the time the exec function is
cal | ed.

The new process also inherits the following attributes from
the calling process:

o nice value (see nice(2))

0o scheduler class and priority (see priocntl (2))
0 process ID

0o parent process ID

0 process group ID

o task ID

0 suppl enentary group |IDs

o senmmdj val ues (see senop(2))

Tiie//inome/roain/man_exec_sunOS

23.01.2007 2109

4 of 6

0 session menbership (see exit(2) and signal (30))
o real user ID

o real group ID

o project ID

o trace flag (see ptrace(2) request 0)

o time left until an alarmclock signal (see alarm2))
o current working directory

o root directory

o file node creation mask (see umask(2))

o filesizelinmt (see ulimt(2))

0o resource limts (see getrlimt(2))

o tms_utinme, tns_stime, tms_cutinme, and tns_cstine (see
times(2))

o file-locks (see fcntl(2) and | ockf(30))

o controlling term nal

o process signal mask (see sigprocmask(2))

o pending signals (see sigpending(2))

0 processor bindings (see processor_bind(2))
0 processor set bindings (see pset_bhind(2))

A call to any exec function froma process wth nore than
one thread results in all threads being terninated and the
new execut abl e i mage being | oaded and executed. No destruc-
tor functions will be called

Upon successful completion, each of the functions in the
exec famly marks for update the st_atine field of the file.
If an exec function failed but was able to |locate the pro-
cess image file, whether the st_atine field is marked for
update is unspecified. Should the function succeed, the pro-
cess image file is considered to have been opened with
open(2). The corresponding close(2) is considered to occur
at a tine after this open, but before process term nation or

successful conpletion of a subsequent call to one of the
exec functions. The argv[] and envp[] arrays of pointers and
the strings to which those arrays point will not be nodified

by a call to one of the exec functions, except as a conse-
quence of replacing the process inmge

The saved resource limts in the new process image are set
to be a copy of the process’s correspondi ng hard and soft
limts.

RETURN VALUES

If a function in the exec family returns to the calling pro-
cess immge, an error has occurred; the return value is -1
and errno is set to indicate the error.

ERRCORS

The exec functions will fail if:

E2BI G The number of bytes in the new process’s argument |i st
is greater than the systeminposed limt of {ARG MAX}
bytes. The argument list limt is sumof the size of
the argument |Ilist plus the size of the environnment's
exported shell variables.

EACCES
Search permssion is denied for a directory listed in
the new process file' s path prefix; the new process
file is not an ordinary file; or the new process file
nmode deni es execute perm ssion.

Tiie//inome/roain/man_exec_sunOS

23.01.2007 2109

50f 6

EAGAI N
Total anmount of system menory avail able when reading
using raw I /O is tenporarily insufficient.

EFAULT
An argunment points to an illegal address.

EI NTR A signal was caught during the execution of one of the
functions in the exec famly.

ELOOP Too many symbolic |inks were encountered in translat-
ing path or file.

ENAMETOOLONG
The length of the file or path argument exceeds
{PATH_ MAX}, or the length of a file or path conponent
exceeds {NAME_MAX} while {_POSIX_NO TRUNC} is in
effect.

ENCENT
One or nore components of the new process path nanme of
the file do not exist or is a null pathnane.

ENCLI NK
The path argunment points to a renote machine and the
link to that nmachine is no |onger active.

ENOTDI R
A conponent of the new process path of the file prefix
is not a directory.

The exec functions, except for execlp() and execvp(), wll
fail if:

ENCEXEC
The new process inmage file has the appropriate access
permi ssion but is not in the proper fornmat.

The exec functions may fail if:
ENAVETOOLONG
Pat hnanme resolution of a synbolic I|ink produced an

intermedi ate result whose | ength exceeds {PATH _MAX}.

ENOVEM
The new process inmage requires nore nenory than is
allowed by the hardware or systeminposed by nenory
managenent constraints. See brk(2).

ETXTBSY
The new process image file is a pure procedure (shared
text) file that is currently open for witing by sone
process.

USAGE

As the state of conversion descriptors and nessage catal ogue
descriptors in the new process inmage is undefined, portable
applications should not rely on their use and should close
themprior to calling one of the exec functions.

Applications that require other than the default POSIX
| ocal e should call setlocale(3C) with the appropriate param
eters to establish the |ocal e of thenew process.

The environ array should not be accessed directly by the
application.

ATTRI BUTES

See attributes(5) for descriptions of the following attri-
but es:

ATTRI BUTE TYPE ATTRI BUTE VALUE

Interface Stability St andard

MT- Level execl e() and execve() are

Async- Si gnal - Saf e

Tiie//inome/roain/man_exec_sunOS

23.01.2007 2109

6 of 6

SEE ALSO

ksh(1), ps(1l), sh(l), alarm(2), brk(2), chmd(2), exit(2),
fentl (2), fork(2), getrlimt(2), mencntl (2), nmap(2),
nice(2), priocntl(2), profil(2), semop(2), shmop(2), sig-
pendi ng(2), sigprocmask(2), times(2), umask(2), |ockf (30,
ptrace(2), setl ocal e(30), signal (30, systen(3C),
timer_create(3RT), a.out(4), attributes(5), environ(5),
st andar ds(5)

WARNI NGS
If a program is setuid to a wuser ID other than th
superuser, and the programis executed when the real user |
i s super-user, then the program has sone of the powers of
super-user as well.

e
D
a

SunGs 5.9 Last change: 20 Dec 2001

Tiie//inome/roain/man_exec_sunOS

23.01.2007 2109

