
file:///home/rodin/man_fork_SunOS

1 of 3 23.01.2007 21:12

System Calls fork(2)

NAME
 fork, fork1 - create a new process

SYNOPSIS
 #include <sys/types.h>
 #include <unistd.h>

 pid_t fork(void);

 pid_t fork1(void);

DESCRIPTION
 The fork() and fork1() functions create a new process. The
 new process (child process) is an exact copy of the calling
 process (parent process). The child process inherits the
 following attributes from the parent process:

 o real user ID, real group ID, effective user ID, effec-
 tive group ID

 o environment

 o open file descriptors

 o close-on-exec flags (see exec(2))

 o signal handling settings (that is, SIG_DFL, SIG_IGN,
 SIG_HOLD, function address)

 o supplementary group IDs

 o set-user-ID mode bit

 o set-group-ID mode bit

 o profiling on/off status

 o nice value (see nice(2))

 o scheduler class (see priocntl(2))

 o all attached shared memory segments (see shmop(2))

 o process group ID -- memory mappings (see mmap(2))

 o session ID (see exit(2))

 o current working directory

 o root directory

 o file mode creation mask (see umask(2))

 o resource limits (see getrlimit(2))

 o controlling terminal

 o saved user ID and group ID

 o task ID and project ID

 o processor bindings (see processor_bind(2))

 o processor set bindings (see pset_bind(2))

 Scheduling priority and any per-process scheduling parame-
 ters that are specific to a given scheduling class may or
 may not be inherited according to the policy of that partic-
 ular class (see priocntl(2)). The child process differs
 from the parent process in the following ways:

 o The child process has a unique process ID which does
 not match any active process group ID.

 o The child process has a different parent process ID
 (that is, the process ID of the parent process).

file:///home/rodin/man_fork_SunOS

2 of 3 23.01.2007 21:12

 o The child process has its own copy of the parent’s
 file descriptors and directory streams. Each of the
 child’s file descriptors shares a common file pointer
 with the corresponding file descriptor of the parent.

 o Each shared memory segment remains attached and the
 value of shm_nattach is incremented by 1.

 o All semadj values are cleared (see semop(2)).

 o Process locks, text locks, data locks, and other
 memory locks are not inherited by the child (see
 plock(3C) and memcntl(2)).

 o The child process’s tms structure is cleared:
 tms_utime, stime, cutime, and cstime are set to 0 (see
 times(2)).

 o The child processes resource utilizations are set to
 0; see getrlimit(2). The it_value and it_interval
 values for the ITIMER_REAL timer are reset to 0; see
 getitimer(2).

 o The set of signals pending for the child process is
 initialized to the empty set.

 o Timers created by timer_create(3RT) are not inherited
 by the child process.

 o No asynchronous input or asynchronous output opera-
 tions are inherited by the child.

 o Any preferred hardware address tranlsation sizes (see
 memcntl(2)) are inherited by the child.

 Record locks set by the parent process are not inherited by
 the child process (see fcntl(2)).

 Solaris Threads

 In applications that use the Solaris threads API rather than
 the POSIX threads API (applications linked with -lthread but
 not -lpthread),fork() duplicates in the child process all
 threads (see thr_create(3THR)) and LWPs in the parent pro-
 cess. The fork1() function duplicates only the calling
 thread (LWP) in the child process.

 POSIX Threads

 In applications that use the POSIX threads API rather than
 the Solaris threads API (applications linked with
 -lpthread, whether or not linked with -lthread), a call to
 fork() is like a call to fork1(), which replicates only the
 calling thread. There is no call that forks a child with all
 threads and LWPs duplicated in the child.

 Note that if a program is linked with both libraries (-
 lthread and -lpthread), the POSIX semantic of fork() pre-
 vails.

 fork() Safety

 If a Solaris threads application calls fork1() or a POSIX
 threads application calls fork(), and the child does more
 than simply call exec(), there is a possibility of deadlock
 occurring in the child. The application should use
 pthread_atfork(3C) to ensure safety with respect to this
 deadlock. Should there be any outstanding mutexes throughout
 the process, the application should call pthread_atfork() to
 wait for and acquire those mutexes prior to calling fork()
 or fork1(). See "MT-Level of Libraries" on the attri-
 butes(5) manual page.

RETURN VALUES
 Upon successful completion, fork() and fork1() return 0 to
 the child process and return the process ID of the child
 process to the parent process. Otherwise, (pid_t)-1 is
 returned to the parent process, no child process is created,
 and errno is set to indicate the error.

file:///home/rodin/man_fork_SunOS

3 of 3 23.01.2007 21:12

ERRORS
 The fork() function will fail if:

 EAGAIN
 The system-imposed limit on the total number of
 processes under execution by a single user has been
 exceeded; or the total amount of system memory avail-
 able is temporarily insufficient to duplicate this
 process.

 ENOMEM
 There is not enough swap space.

ATTRIBUTES
 See attributes(5) for descriptions of the following attri-
 butes:

 __
 | ATTRIBUTE TYPE | ATTRIBUTE VALUE |
 |_____________________________|_____________________________|
 | MT-Level | fork() is Async-Signal-Safe |
 |_____________________________|_____________________________|

SEE ALSO
 alarm(2), exec(2), exit(2), fcntl(2), getitimer(2),
 getrlimit(2), memcntl(2), mmap(2), nice(2), priocntl(2),
 ptrace(2), semop(2), shmop(2), times(2), umask(2), wait(2),
 exit(3C), plock(3C), pthread_atfork(3C), signal(3C),
 system(3C), thr_create(3THR) timer_create(3RT), attri-
 butes(5), standards(5)

NOTES
 An applications should call _exit() rather than exit(3C) if
 it cannot execve(), since exit() will flush and close stan-
 dard I/O channels and thereby corrupt the parent process’s
 standard I/O data structures. Using exit(3C) will flush buf-
 fered data twice. See exit(2).

 The thread (or LWP) in the child that calls fork1() must not
 depend on any resources held by threads (or LWPs) that no
 longer exist in the child. In particular, locks held by
 these threads (or LWPs) will not be released.

 In a multithreaded process, fork() or fork1() can cause
 blocking system calls to be interrupted and return with an
 EINTR error.

 The fork() and fork1() functions suspend all threads in the
 process before proceeding. Threads that are executing in
 the kernel and are in an uninterruptible wait cannot be
 suspended immediately and therefore cause a delay before
 fork() and fork1() can complete. During this delay, since
 all other threads will have already been suspended, the pro-
 cess will appear "hung."

SunOS 5.9 Last change: 23 Jul 2001

