lof 3

System Cal | s fork(2)

NANVE
fork, forkl - create a new process

SYNCPSI S
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>
pid_t fork(void);
pid_t forkl(void);

DESCRI PTI ON
The fork() and forkl1l() functions create a new process. The
new process (child process) is an exact copy of the calling
process (parent process). The <child process inherits the
following attributes fromthe parent process:

o real user ID real group ID, effective user ID, effec-
tive group ID

0 environment
o open file descriptors
o close-on-exec flags (see exec(2))

o signal handling settings (that is, SIGDFL, SIG.IGN
SI G HOLD, function address)

0 suppl enentary group |Ds

0 set-user-I1D node bit

0 set-group-1D node bit

o profiling on/off status

o nice value (see nice(2))

o schedul er class (see priocntl (2))

o all attached shared nenory segnments (see shnmop(2))

0 process group ID -- nenory nmappings (see mmap(2))

0 session ID (see exit(2))

o current working directory

o root directory

o file node creation mask (see umask(2))

0o resource limts (see getrlimt(2))

o controlling term nal

o saved user ID and group ID

o task ID and project ID

0 processor bindings (see processor_bind(2))

0 processor set bindings (see pset_bind(2))
Scheduling priority and any per-process scheduling parane-
ters that are specific to a given scheduling class may or
may not be inherited according to the policy of that partic-
ular class (see priocntl(2)). The child process differs

fromthe parent process in the foll ow ng ways:

o The child process has a unique process ID which does
not match any active process group |ID.

o The child process has a different parent process |ID
(that is, the process |ID of the parent process).

Tiie//inome/roain/man_tork_sunOS

23.01.2007 21:12

20f 3

0 The child process has I1ts own copy ot the parent’s
file descriptors and directory streans. Each of the
child s file descriptors shares a common file pointer
with the corresponding file descriptor of the parent.

o Each shared nmenory segment remmins attached and the
val ue of shmnattach is increnented by 1.

o Al semadj values are cleared (see senmop(2)).
o Process locks, text locks, data Ilocks, and other

menory locks are not inherited by the child (see
pl ock(3C) and nentntl (2)).

o The child process’'s tns structure is cl eared
tnms_utime, stime, cutine, and cstime are set to 0 (see
times(2)).

o The child processes resource utilizations are set to
0; see getrlimt(2). The it_value and it_interva
values for the ITIMER REAL tiner are reset to 0; see
getitimer(2).

o The set of signals pending for the child process is
initialized to the enpty set.

o Tiners created by tiner_create(3RT) are not inherited
by the child process.

o No asynchronous input or asynchronous output opera-
tions are inherited by the child.

0 Any preferred hardware address tranlsation sizes (see
mencnt!| (2)) are inherited by the child.

Record | ocks set by the parent process are not inherited by
the child process (see fcntl(2)).

Sol ari s Threads

In applications that use the Solaris threads APl rather than
the PCSI X threads APl (applications linked with -1thread but
not -lpthread),fork() duplicates in the child process al
threads (see thr_create(3THR)) and LWPs in the parent pro-
cess. The forkl() function duplicates only the «calling
thread (LWP) in the child process.

PCsI X Thr eads

In applications that use the POSI X threads APl rather than
t he Sol ari s t hr eads APl (applications linked wth
-l pthread, whether or not linked with -lIthread), a call to
fork() is like a call to forkl1l(), which replicates only the
calling thread. There is no call that forks a child with al
threads and LWPs duplicated in the child.

Note that if a programis linked with both Ilibraries (-
Ithread and -Ipthread), the PCSIX senmantic of fork() pre-
vail s.

fork() Safety

If a Solaris threads application calls forkl() or a PCSIX
threads application calls fork(), and the child does nore
than sinply call exec(), there is a possibility of deadl ock
occurring in t he child. The application should use
pthread _atfork(3C) to ensure safety wth respect to this
deadl ock. Shoul d there be any outstandi ng nutexes throughout
the process, the application should call pthread atfork() to
wait for and acquire those nutexes prior to calling fork()
or forkl(). See "MI-Level of Libraries" on the attri-
butes(5) manual page

RETURN VALUES

Upon successful completion, fork() and fork1l() return 0 t
the child process and return the process |ID of the chi
process to the parent process. Oherwise, (pid_t)-1
returned to the parent process, no child process is created,
and errno is set to indicate the error.

0
d
s

Tiie//inome/roain/man_tork_sunOS

23.01.2007 21:12

3of 3

ERRORS
The fork() function will fail if:
EAGAI N
The systeminposed limt on the total nunmber of
processes under execution by a single user has been
exceeded; or the total amount of system menory avail -
able is tenporarily insufficient to duplicate this
process.
ENOVEM
There is not enough swap space.
ATTRI BUTES

See attributes(5) for descriptions of the following attri-
but es:

SEE ALSO

NOTES

ATTRI BUTE TYPE ATTRI BUTE VALUE
MT- Level fork() is Async-Signal - Saf e

alarm(2), exec(2), exit(2), fentl (2), getitiner(2),
getrlimt(2), mencntl (2), mmap(2), nice(2), priocntl(2),
ptrace(2), senop(2), shmop(2), tinmes(2), umask(2), wait(2),
exit (30, pl ock(30Q), pt hread_at f ork(3C), signal (30),
systenm(3Q), thr_create(3THR) timer_create(3RT), attri -
butes(5), standards(5)

An applications should call _exit() rather than exit(3C if

it cannot execve(), since exit() will flush and cl ose stan-
dard I/ 0O channel s and thereby corrupt the parent process’s
standard 1/ O data structures. Using exit(3C) wll flush buf-
fered data twice. See exit(2).

The thread (or LMWP) in the child that calls forkl() must not
depend on any resources held by threads (or LWPs) that no
| onger exist in the child. In particular, locks held by
these threads (or LWPs) wi |l not be rel eased.

In a multithreaded process, fork() or forkl() can cause
bl ocking system calls to be interrupted and return with an
El NTR error.

The fork() and fork1l() functions suspend all threads in the
process before proceeding. Threads that are executing in
the kernel and are in an wuninterruptible wait cannot be
suspended imediately and therefore cause a delay before
fork() and forkl1l() can conplete. During this delay, since
all other threads will have already been suspended, the pro-
cess will appear "hung."

SunGs 5.9 Last change: 23 Jul 2001

Tiie//inome/roain/man_tork_sunOS

23.01.2007 21:12

