
file:///home/rodin/man_read_SunOS

1 of 5 23.01.2007 21:17

System Calls read(2)

NAME
 read, readv, pread - read from file

SYNOPSIS
 #include <unistd.h>

 ssize_t read(int fildes, void *buf, size_t nbyte);

 ssize_t pread(int fildes, void *buf, size_t nbyte, off_t
 offset);

 #include <sys/uio.h>

 ssize_t readv(int fildes, const struct iovec *iov, int
 iovcnt);

DESCRIPTION
 The read() function attempts to read nbyte bytes from the
 file associated with the open file descriptor, fildes, into
 the buffer pointed to by buf.

 If nbyte is 0, read() returns 0 and has no other results.

 On files that support seeking (for example, a regular file),
 the read() starts at a position in the file given by the
 file offset associated with fildes. The file offset is
 incremented by the number of bytes actually read.

 Files that do not support seeking (for example, terminals)
 always read from the current position. The value of a file
 offset associated with such a file is undefined.

 If fildes refers to a socket, read() is equivalent to
 recv(3SOCKET) with no flags set.

 No data transfer will occur past the current end-of-file.
 If the starting position is at or after the end-of-file, 0
 will be returned. If the file refers to a device special
 file, the result of subsequent read() requests is
 implementation-dependent.

 When attempting to read from a regular file with mandatory
 file/record locking set (see chmod(2)), and there is a write
 lock owned by another process on the segment of the file to
 be read:

 o If O_NDELAY or O_NONBLOCK is set, read() returns -1
 and sets errno to EAGAIN.

 o If O_NDELAY and O_NONBLOCK are clear, read() sleeps
 until the blocking record lock is removed.

 When attempting to read from an empty pipe (or FIFO):

 o If no process has the pipe open for writing, read()
 returns 0 to indicate end-of-file.

 o If some process has the pipe open for writing and
 O_NDELAY is set, read() returns 0.

 o If some process has the pipe open for writing and
 O_NONBLOCK is set, read() returns -1 and sets errno to
 EAGAIN.

 o If O_NDELAY and O_NONBLOCK are clear, read() blocks
 until data is written to the pipe or the pipe is
 closed by all processes that had opened the pipe for
 writing.

 When attempting to read a file associated with a terminal
 that has no data currently available:

 o If O_NDELAY is set, read() returns 0.

 o If O_NONBLOCK is set, read() returns -1 and sets errno
 to EAGAIN.

file:///home/rodin/man_read_SunOS

2 of 5 23.01.2007 21:17

 o If O_NDELAY and O_NONBLOCK are clear, read() blocks
 until data become available.

 When attempting to read a file associated with a socket or a
 stream that is not a pipe, a FIFO, or a terminal, and the
 file has no data currently available:

 o If O_NDELAY or O_NONBLOCK is set, read() returns -1
 and sets errno to EAGAIN.

 o If O_NDELAY and O_NONBLOCK are clear, read() blocks
 until data becomes available.

 The read() function reads data previously written to a file.
 If any portion of a regular file prior to the end-of-file
 has not been written, read() returns bytes with value 0.
 For example, lseek(2) allows the file offset to be set
 beyond the end of existing data in the file. If data is
 later written at this point, subsequent reads in the gap
 between the previous end of data and the newly written data
 will return bytes with value 0 until data is written into
 the gap.

 For regular files, no data transfer will occur past the
 offset maximum established in the open file description
 associated with fildes.

 Upon successful completion, where nbyte is greater than 0,
 read() will mark for update the st_atime field of the file,
 and return the number of bytes read. This number will never
 be greater than nbyte. The value returned may be less than
 nbyte if the number of bytes left in the file is less than
 nbyte, if the read() request was interrupted by a signal, or
 if the file is a pipe or FIFO or special file and has fewer
 than nbyte bytes immediately available for reading. For
 example, a read() from a file associated with a terminal may
 return one typed line of data.

 If a read() is interrupted by a signal before it reads any
 data, it will return -1 with errno set to EINTR.

 If a read() is interrupted by a signal after it has success-
 fully read some data, it will return the number of bytes
 read.

 A read() from a STREAMS file can read data in three dif-
 ferent modes: byte-stream mode, message-nondiscard mode,
 and message-discard mode. The default is byte-stream mode.
 This can be changed using the I_SRDOPT ioctl(2) request, and
 can be tested with the I_GRDOPT ioctl(). In byte-stream
 mode, read() retrieves data from the STREAM until as many
 bytes as were requested are transferred, or until there is
 no more data to be retrieved. Byte-stream mode ignores mes-
 sage boundaries.

 In STREAMS message-nondiscard mode, read() retrieves data
 until as many bytes as were requested are transferred, or
 until a message boundary is reached. If read() does not
 retrieve all the data in a message, the remaining data is
 left on the STREAM, and can be retrieved by the next read()
 call. Message-discard mode also retrieves data until as
 many bytes as were requested are transferred, or a message
 boundary is reached. However, unread data remaining in a
 message after the read() returns is discarded, and is not
 available for a subsequent read(), readv() or getmsg(2)
 call.

 How read() handles zero-byte STREAMS messages is determined
 by the current read mode setting. In byte-stream mode,
 read() accepts data until it has read nbyte bytes, or until
 there is no more data to read, or until a zero-byte message
 block is encountered. The read() function then returns the
 number of bytes read, and places the zero-byte message back
 on the STREAM to be retrieved by the next read(), readv() or
 getmsg(2). In message-nondiscard mode or message-discard
 mode, a zero-byte message returns 0 and the message is
 removed from the STREAM. When a zero-byte message is read
 as the first message on a STREAM, the message is removed
 from the STREAM and 0 is returned, regardless of the read
 mode.

file:///home/rodin/man_read_SunOS

3 of 5 23.01.2007 21:17

 A read() from a STREAMS file returns the data in the message
 at the front of the STREAM head read queue, regardless of
 the priority band of the message.

 By default, STREAMs are in control-normal mode, in which a
 read() from a STREAMS file can only process messages that
 contain a data part but do not contain a control part. The
 read() fails if a message containing a control part is
 encountered at the STREAM head. This default action can be
 changed by placing the STREAM in either control-data mode or
 control-discard mode with the I_SRDOPT ioctl() command. In
 control-data mode, read() converts any control part to data
 and passes it to the application before passing any data
 part originally present in the same message. In control-
 discard mode, read() discards message control parts but
 returns to the process any data part in the message.

 In addition, read() and readv() will fail if the STREAM head
 had processed an asynchronous error before the call. In
 this case, the value of errno does not reflect the result of
 read() or readv() but reflects the prior error. If a hangup
 occurs on the STREAM being read, read() continues to operate
 normally until the STREAM head read queue is empty.
 Thereafter, it returns 0.

 readv()
 The readv() function is equivalent to read(), but places the
 input data into the iovcnt buffers specified by the members
 of the iov array: iov0, iov1, ..., iov[iovcnt-1]. The iovcnt
 argument is valid if greater than 0 and less than or equal
 to IOV_MAX.

 The iovec structure contains the following members:

 caddr_t iov_base;
 int iov_len;

 Each iovec entry specifies the base address and length of an
 area in memory where data should be placed. The readv()
 function always fills an area completely before proceeding
 to the next.

 Upon successful completion, readv() marks for update the
 st_atime field of the file.

 pread()
 The pread() function performs the same action as read(),
 except that it reads from a given position in the file
 without changing the file pointer. The first three arguments
 to pread() are the same as read() with the addition of a
 fourth argument offset for the desired position inside the
 file. pread() will read up to the maximum offset value that
 can be represented in an off_t for regular files. An attempt
 to perform a pread() on a file that is incapable of seeking
 results in an error.

RETURN VALUES
 Upon successful completion, read() and readv() return a
 non-negative integer indicating the number of bytes actually
 read. Otherwise, the functions return -1 and set errno to
 indicate the error.

ERRORS
 The read(), readv(), and pread() functions will fail if:

 EAGAIN
 Mandatory file/record locking was set, O_NDELAY or
 O_NONBLOCK was set, and there was a blocking record
 lock; total amount of system memory available when
 reading using raw I/O is temporarily insufficient; no
 data is waiting to be read on a file associated with a
 tty device and O_NONBLOCK was set; or no message is
 waiting to be read on a stream and O_NDELAY or
 O_NONBLOCK was set.

 EBADF The fildes argument is not a valid file descriptor
 open for reading.

file:///home/rodin/man_read_SunOS

4 of 5 23.01.2007 21:17

 EBADMSG
 Message waiting to be read on a stream is not a data
 message.

 EDEADLK
 The read was going to go to sleep and cause a deadlock
 to occur.

 EINTR A signal was caught during the read operation and no
 data was transferred.

 EINVAL
 An attempt was made to read from a stream linked to a
 multiplexor.

 EIO A physical I/O error has occurred, or the process is
 in a background process group and is attempting to
 read from its controlling terminal, and either the
 process is ignoring or blocking the SIGTTIN signal or
 the process group of the process is orphaned.

 EISDIR
 The fildes argument refers to a directory on a file
 system type that does not support read operations on
 directories.

 ENOLCK
 The system record lock table was full, so the read()
 or readv() could not go to sleep until the blocking
 record lock was removed.

 ENOLINK
 The fildes argument is on a remote machine and the
 link to that machine is no longer active.

 ENXIO The device associated with fildes is a block special
 or character special file and the value of the file
 pointer is out of range.

 The read() and pread() functions will fail if:

 EFAULT
 The buf argument points to an illegal address.

 EINVAL
 The nbyte argument overflowed an ssize_t.

 The read() and readv() functions will fail if:

 EOVERFLOW
 The file is a regular file, nbyte is greater than 0,
 the starting position is before the end-of-file, and
 the starting position is greater than or equal to the
 offset maximum established in the open file descrip-
 tion associated with fildes.

 The readv() function may fail if:

 EFAULT
 The iov argument points outside the allocated address
 space.

 EINVAL
 The iovcnt argument was less than or equal to 0 or
 greater than {IOV_MAX}. (See intro(2) for a definition
 of {IOV_MAX}).

 EINVAL
 One of the iov_len values in the iov array was nega-
 tive, or the the sum of the iov_len values in the iov
 array overflowed an ssize_t.

 The pread() function will fail and the file pointer remain
 unchanged if:

 ESPIPE
 The fildes argument is associated with a pipe or FIFO.

file:///home/rodin/man_read_SunOS

5 of 5 23.01.2007 21:17

USAGE
 The pread() function has a transitional interface for 64-bit
 file offsets. See lf64(5).

ATTRIBUTES
 See attributes(5) for descriptions of the following attri-
 butes:

 __
 | ATTRIBUTE TYPE | ATTRIBUTE VALUE |
 |_____________________________|_____________________________|
 | MT-Level | read() is Async-Signal-Safe |
 |_____________________________|_____________________________|

SEE ALSO
 intro(2), chmod(2), creat(2), dup(2), fcntl(2), getmsg(2),
 ioctl(2), lseek(2), open(2), pipe(2), recv(3SOCKET), attri-
 butes(5), lf64(5), streamio(7I), termio(7I)

SunOS 5.9 Last change: 7 May 2001

