
file:///home/rodin/man_sigaction_SunOS

1 of 3 23.01.2007 21:21

System Calls sigaction(2)

NAME

 sigaction - detailed signal management

SYNOPSIS

 #include <signal.h>

 int sigaction(int sig, const struct sigaction *act, struct
 sigaction *oact);

DESCRIPTION

 The sigaction() function allows the calling process to exam-
 ine or specify the action to be taken on delivery of a
 specific signal. See signal(3HEAD) for an explanation of
 general signal concepts.

 The sig argument specifies the signal and can be assigned
 any of the signals specified in signal(3HEAD) except SIG-
 KILL and SIGSTOP. In a multithreaded process, sig cannot be
 SIGWAITING, SIGCANCEL, or SIGLWP.

 If the argument act is not NULL, it points to a structure
 specifying the new action to be taken when delivering sig.
 If the argument oact is not NULL, it points to a structure
 where the action previously associated with sig is to be
 stored on return from sigaction().

 The sigaction structure includes the following members:

 void (*sa_handler)();
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;

 The storage occupied by sa_handler and sa_sigaction may
 overlap, and a standard-conforming application (see stan-
 dards(5)) must not use both simultaneously.

 The sa_handler member identifies the action to be associated
 with the specified signal, if the SA_SIGINFO flag (see
 below) is cleared in the sa_flags field of the sigaction
 structure. It may take any of the values specified in
 signal(3HEAD) or that of a user specified signal handler. If
 the SA_SIGINFO flag is set in the sa_flags field, the
 sa_sigaction field specifies a signal-catching function.

 The sa_mask member specifies a set of signals to be blocked
 while the signal handler is active. On entry to the signal
 handler, that set of signals is added to the set of signals
 already being blocked when the signal is delivered. In addi-
 tion, the signal that caused the handler to be executed will
 also be blocked, unless the SA_NODEFER flag has been speci-
 fied. SIGSTOP and SIGKILL cannot be blocked (the system
 silently enforces this restriction).

 The sa_flags member specifies a set of flags used to modify
 the delivery of the signal. It is formed by a logical OR of
 any of the following values:

 SA_ONSTACK
 If set and the signal is caught, and if the thread
 that is chosen to processes a delivered signal has an
 alternate signal stack declared with sigaltstack(2),
 then it will process the signal on that stack. Other-
 wise, the signal is delivered on the thread’s normal
 stack.

 SA_RESETHAND
 If set and the signal is caught, the disposition of
 the signal is reset to SIG_DFL and the signal will not
 be blocked on entry to the signal handler (SIGILL,
 SIGTRAP, and SIGPWR cannot be automatically reset
 when delivered; the system silently enforces this res-
 triction).

file:///home/rodin/man_sigaction_SunOS

2 of 3 23.01.2007 21:21

 SA_NODEFER
 If set and the signal is caught, the signal will not
 be automatically blocked by the kernel while it is
 being caught.

 SA_RESTART
 If set and the signal is caught, functions that are
 interrupted by the execution of this signal’s handler
 are transparently restarted by the system, namely
 fcntl(2), ioctl(2), wait(2), waitid(2), and the fol-
 lowing functions on slow devices like terminals:
 getmsg() and getpmsg() (see getmsg(2)); putmsg() and
 putpmsg() (see putmsg(2)); pread(), read(), and
 readv() (see read(2)); pwrite(), write(), and writev()
 (see write(2)); recv(), recvfrom(), and recvmsg() (see
 recv(3SOCKET)); and send(), sendto(), and sendmsg()
 (see send(3SOCKET). Otherwise, the function returns an
 EINTR error.

 SA_SIGINFO
 If cleared and the signal is caught, sig is passed as
 the only argument to the signal-catching function. If
 set and the signal is caught, two additional argu-
 ments are passed to the signal-catching function. If
 the second argument is not equal to NULL, it points to
 a siginfo_t structure containing the reason why the
 signal was generated (see siginfo(3HEAD)); the third
 argument points to a ucontext_t structure containing
 the receiving process’s context when the signal was
 delivered (see ucontext(3HEAD)).

 SA_NOCLDWAIT
 If set and sig equals SIGCHLD, the system will not
 create zombie processes when children of the calling
 process exit. If the calling process subsequently
 issues a wait(2), it blocks until all of the calling
 process’s child processes terminate, and then returns
 -1 with errno set to ECHILD.

 SA_NOCLDSTOP
 If set and sig equals SIGCHLD, SIGCHLD will not be
 sent to the calling process when its child processes
 stop or continue.

RETURN VALUES
 Upon successful completion, 0 is returned. Otherwise, -1 is
 returned, errno is set to indicate the error, and no new
 signal handler is installed.

ERRORS
 The sigaction() function will fail if:

 EINVAL
 The value of the sig argument is not a valid signal
 number or is equal to SIGKILL or SIGSTOP. In addi-
 tion, if in a multithreaded process, it is equal to
 SIGWAITING, SIGCANCEL, or SIGLWP.

ATTRIBUTES
 See attributes(5) for descriptions of the following attri-
 butes:

 __
 | ATTRIBUTE TYPE | ATTRIBUTE VALUE |
 |_____________________________|_____________________________|
 | Interface Stability | Standard |
 |_____________________________|_____________________________|
 | MT-Level | Async-Signal-Safe |
 |_____________________________|_____________________________|

SEE ALSO
 kill(1), intro(2), exit(2), fcntl(2), getmsg(2), ioctl(2),
 kill(2), pause(2), putmsg(2), read(2), sigaltstack(2), sig-
 procmask(2), sigsend(2), sigsuspend(2), wait(2), waitid(2),
 write(2), recv(3SOCKET), send(3SOCKET), siginfo(3HEAD),
 signal(3C), signal(3HEAD), sigsetops(3C), thr_create(3THR),
 ucontext(3HEAD), attributes(5), standards(5)

file:///home/rodin/man_sigaction_SunOS

3 of 3 23.01.2007 21:21

NOTES
 The handler routine can be declared:

 void handler (int sig, siginfo_t *sip, ucontext_t *ucp);

 The sig argument is the signal number. The sip argument is a
 pointer (to space on the stack) to a siginfo_t structure,
 which provides additional detail about the delivery of the
 signal. The ucp argument is a pointer (again to space on the
 stack) to a ucontext_t structure (defined in
 <sys/ucontext.h>) which contains the context from before the
 signal. It is not recommended that ucp be used by the
 handler to restore the context from before the signal
 delivery.

SunOS 5.9 Last change: 9 Jul 2002

