
file:///home/rodin/man_write_SunOS

1 of 5 23.01.2007 21:23

System Calls write(2)

NAME
 write, pwrite, writev - write on a file

SYNOPSIS
 #include <unistd.h>

 ssize_t write(int fildes, const void *buf, size_t nbyte);

 ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
 off_t offset);

 #include <sys/uio.h>

 ssize_t writev(int fildes, const struct iovec *iov, int
 iovcnt);

DESCRIPTION
 The write() function attempts to write nbyte bytes from the
 buffer pointed to by buf to the file associated with the
 open file descriptor, fildes.

 If nbyte is 0, write() will return 0 and have no other
 results if the file is a regular file; otherwise, the
 results are unspecified.

 On a regular file or other file capable of seeking, the
 actual writing of data proceeds from the position in the
 file indicated by the file offset associated with fildes.
 Before successful return from write(), the file offset is
 incremented by the number of bytes actually written. On a
 regular file, if this incremented file offset is greater
 than the length of the file, the length of the file will be
 set to this file offset.

 If the O_SYNC bit has been set, write I/O operations on the
 file descriptor complete as defined by synchronized I/O file
 integrity completion.

 If fildes refers to a socket, write() is equivalent to
 send(3SOCKET) with no flags set.

 On a file not capable of seeking, writing always takes place
 starting at the current position. The value of a file
 offset associated with such a device is undefined.

 If the O_APPEND flag of the file status flags is set, the
 file offset will be set to the end of the file prior to each
 write and no intervening file modification operation will
 occur between changing the file offset and the write opera-
 tion.

 For regular files, no data transfer will occur past the
 offset maximum established in the open file description with
 fildes.

 A write() to a regular file is blocked if mandatory
 file/record locking is set (see chmod(2)), and there is a
 record lock owned by another process on the segment of the
 file to be written:

 o If O_NDELAY or O_NONBLOCK is set, write() returns -1
 and sets errno to EAGAIN.

 o If O_NDELAY and O_NONBLOCK are clear, write() sleeps
 until all blocking locks are removed or the write() is
 terminated by a signal.

 If a write() requests that more bytes be written than there
 is room for-for example, if the write would exceed the pro-
 cess file size limit (see getrlimit(2) and ulimit(2)), the
 system file size limit, or the free space on the device-only
 as many bytes as there is room for will be written. For
 example, suppose there is space for 20 bytes more in a file
 before reaching a limit. A write() of 512-bytes returns 20.
 The next write() of a non-zero number of bytes gives a
 failure return (except as noted for pipes and FIFO below).

file:///home/rodin/man_write_SunOS

2 of 5 23.01.2007 21:23

 If write() is interrupted by a signal before it writes any
 data, it will return -1 with errno set to EINTR.

 If write() is interrupted by a signal after it successfully
 writes some data, it will return the number of bytes writ-
 ten.

 After a write() to a regular file has successfully returned:

 o Any successful read(2) from each byte position in the
 file that was modified by that write will return the
 data specified by the write() for that position until
 such byte positions are again modified.

 o Any subsequent successful write() to the same byte
 position in the file will overwrite that file data.

 Write requests to a pipe or FIFO are handled the same as a
 regular file with the following exceptions:

 o There is no file offset associated with a pipe, hence
 each write request appends to the end of the pipe.

 o Write requests of {PIPE_BUF} bytes or less are
 guaranteed not to be interleaved with data from other
 processes doing writes on the same pipe. Writes of
 greater than {PIPE_BUF} bytes may have data inter-
 leaved, on arbitrary boundaries, with writes by other
 processes, whether or not the O_NONBLOCK or O_NDELAY
 flags are set.

 o If O_NONBLOCK and O_NDELAY are clear, a write request
 may cause the process to block, but on normal comple-
 tion it returns nbyte.

 o If O_NONBLOCK and O_NDELAY are set, write() does not
 block the process. If a write() request for PIPE_BUF
 or fewer bytes succeeds completely write() returns
 nbyte. Otherwise, if O_NONBLOCK is set, it returns -1
 and sets errno to EAGAIN or if O_NDELAY is set, it
 returns 0. A write() request for greater than
 {PIPE_BUF} bytes transfers what it can and returns
 the number of bytes written or it transfers no data
 and, if O_NONBLOCK is set, returns -1 with errno set
 to EAGAIN or if O_NDELAY is set, it returns 0.
 Finally, if a request is greater than PIPE_BUF bytes
 and all data previously written to the pipe has been
 read, write() transfers at least PIPE_BUF bytes.

 When attempting to write to a file descriptor (other than a
 pipe, a FIFO, a socket, or a STREAM) that supports nonblock-
 ing writes and cannot accept the data immediately:

 o If O_NONBLOCK and O_NDELAY are clear, write() blocks
 until the data can be accepted.

 o If O_NONBLOCK or O_NDELAY is set, write() does not
 block the process. If some data can be written without
 blocking the process, write() writes what it can and
 returns the number of bytes written. Otherwise, if
 O_NONBLOCK is set, it returns -1 and sets errno to
 EAGAIN or if O_NDELAY is set, it returns 0.

 Upon successful completion, where nbyte is greater than 0,
 write() will mark for update the st_ctime and st_mtime
 fields of the file, and if the file is a regular file, the
 S_ISUID and S_ISGID bits of the file mode may be cleared.

 For STREAMS files (see intro(2) and streamio(7I)), the
 operation of write() is determined by the values of the
 minimum and maximum nbyte range ("packet size") accepted by
 the STREAM. These values are contained in the topmost STREAM
 module, and can not be set or tested from user level. If
 nbyte falls within the packet size range, nbyte bytes are
 written. If nbyte does not fall within the range and the
 minimum packet size value is zero, write() breaks the
 buffer into maximum packet size segments prior to sending
 the data downstream (the last segment may be smaller than
 the maximum packet size). If nbyte does not fall within the
 range and the minimum value is non-zero, write() fails and

file:///home/rodin/man_write_SunOS

3 of 5 23.01.2007 21:23

 sets errno to ERANGE. Writing a zero-length buffer (nbyte is
 zero) to a STREAMS device sends a zero length message with
 zero returned. However, writing a zero-length buffer to a
 pipe or FIFO sends no message and zero is returned. The
 user program may issue the I_SWROPT ioctl(2) to enable
 zero-length messages to be sent across the pipe or FIFO (see
 streamio(7I)).

 When writing to a STREAM, data messages are created with a
 priority band of zero. When writing to a socket or to a
 STREAM that is not a pipe or a FIFO:

 o If O_NDELAY and O_NONBLOCK are not set, and the STREAM
 cannot accept data (the STREAM write queue is full due
 to internal flow control conditions), write() blocks
 until data can be accepted.

 o If O_NDELAY or O_NONBLOCK is set and the STREAM cannot
 accept data, write() returns -1 and sets errno to
 EAGAIN.

 o If O_NDELAY or O_NONBLOCK is set and part of the
 buffer has already been written when a condition
 occurs in which the STREAM cannot accept additional
 data, write() terminates and returns the number of
 bytes written.

 The write() and writev() functions will fail if the STREAM
 head had processed an asynchronous error before the call.
 In this case, the value of errno does not reflect the result
 of write() or writev() but reflects the prior error.

 pwrite()
 The pwrite() function performs the same action as write(),
 except that it writes into a given position without changing
 the file pointer. The first three arguments to pwrite() are
 the same as write() with the addition of a fourth argument
 offset for the desired position inside the file.

 writev()
 The writev() function performs the same action as write(),
 but gathers the output data from the iovcnt buffers speci-
 fied by the members of the iov array: iov[0], iov[1], ...,
 iov[iovcnt-1]. The iovcnt buffer is valid if greater than 0
 and less than or equal to {IOV_MAX}. See intro(2) for a
 definition of {IOV_MAX}.

 The iovec structure contains the following members:

 caddr_t iov_base;
 int iov_len;

 Each iovec entry specifies the base address and length of an
 area in memory from which data should be written. The wri-
 tev() function always writes all data from an area before
 proceeding to the next.

 If fildes refers to a regular file and all of the iov_len
 members in the array pointed to by iov are 0, writev() will
 return 0 and have no other effect. For other file types,
 the behavior is unspecified.

 If the sum of the iov_len values is greater than SSIZE_MAX,
 the operation fails and no data is transferred.

RETURN VALUES
 Upon successful completion, write() returns the number of
 bytes actually written to the file associated with fildes.
 This number is never greater than nbyte. Otherwise, -1 is
 returned, the file-pointer remains unchanged, and errno is
 set to indicate the error.

 Upon successful completion, writev() returns the number of
 bytes actually written. Otherwise, it returns -1, the
 file-pointer remains unchanged, and errno is set to indicate
 an error.

file:///home/rodin/man_write_SunOS

4 of 5 23.01.2007 21:23

ERRORS
 The write(), pwrite(), and writev() functions will fail if:

 EAGAIN
 Mandatory file/record locking is set, O_NDELAY or
 O_NONBLOCK is set, and there is a blocking record
 lock; an attempt is made to write to a STREAM that can
 not accept data with the O_NDELAY or O_NONBLOCK flag
 set; or a write to a pipe or FIFO of PIPE_BUF bytes or
 less is requested and less than nbytes of free space
 is available.

 EBADF The fildes argument is not a valid file descriptor
 open for writing.

 EDEADLK
 The write was going to go to sleep and cause a
 deadlock situation to occur.

 EDQUOT
 The user’s quota of disk blocks on the file system
 containing the file has been exhausted.

 EFBIG An attempt is made to write a file that exceeds the
 process’s file size limit or the maximum file size
 (see getrlimit(2) and ulimit(2)).

 EFBIG The file is a regular file, nbyte is greater than 0,
 and the starting position is greater than or equal to
 the offset maximum established in the file description
 associated with fildes.

 EINTR A signal was caught during the write operation and no
 data was transferred.

 EIO The process is in the background and is attempting to
 write to its controlling terminal whose TOSTOP flag is
 set, or the process is neither ignoring nor blocking
 SIGTTOU signals and the process group of the process
 is orphaned.

 ENOLCK
 Enforced record locking was enabled and {LOCK_MAX}
 regions are already locked in the system, or the sys-
 tem record lock table was full and the write could
 not go to sleep until the blocking record lock was
 removed.

 ENOLINK
 The fildes argument is on a remote machine and the
 link to that machine is no longer active.

 ENOSPC
 During a write to an ordinary file, there is no free
 space left on the device.

 ENOSR An attempt is made to write to a STREAMS with insuffi-
 cient STREAMS memory resources available in the sys-
 tem.

 ENXIO A hangup occurred on the STREAM being written to.

 EPIPE An attempt is made to write to a pipe or a FIFO that
 is not open for reading by any process, or that has
 only one end open (or to a file descriptor created by
 socket(3SOCKET), using type SOCK_STREAM that is no
 longer connected to a peer endpoint). A SIGPIPE signal
 will also be sent to the process. The process dies
 unless special provisions were taken to catch or
 ignore the signal.

 ERANGE
 The transfer request size was outside the range sup-
 ported by the STREAMS file associated with fildes.

 The write() and pwrite() functions will fail if:

 EFAULT
 The buf argument points to an illegal address.

file:///home/rodin/man_write_SunOS

5 of 5 23.01.2007 21:23

 EINVAL
 The nbyte argument overflowed an ssize_t.

 The pwrite() function fails and the file pointer remains
 unchanged if:

 ESPIPE
 The fildes argument is associated with a pipe or FIFO.

 The write() and writev() functions may fail if:

 EINVAL
 The STREAM or multiplexer referenced by fildes is
 linked (directly or indirectly) downstream from a mul-
 tiplexer.

 ENXIO A request was made of a non-existent device, or the
 request was outside the capabilities of the device.

 ENXIO A hangup occurred on the STREAM being written to.

 A write to a STREAMS file may fail if an error message has
 been received at the STREAM head. In this case, errno is
 set to the value included in the error message.

 The writev() function may fail if:

 EINVAL
 The iovcnt argument was less than or equal to 0 or
 greater than {IOV_MAX}; one of the iov_len values in
 the iov array was negative; or the sum of the iov_len
 values in the iov array overflowed an ssize_t.

USAGE
 The pwrite() function has a transitional interface for 64-
 bit file offsets. See lf64(5).

ATTRIBUTES
 See attributes(5) for descriptions of the following attri-
 butes:
 __
 | ATTRIBUTE TYPE | ATTRIBUTE VALUE |
 |_____________________________|_____________________________|
 | Interface Stability | Standard |
 |_____________________________|_____________________________|
 | MT-Level | write() is Async-Signal-Safe|
 |_____________________________|_____________________________|

SEE ALSO
 intro(2), chmod(2), creat(2), dup(2), fcntl(2),
 getrlimit(2), ioctl(2), lseek(2), open(2), pipe(2),
 ulimit(2), send(3SOCKET), socket(3SOCKET), attributes(5),
 lf64(5), streamio(7I)

SunOS 5.9 Last change: 18 Oct 2001

