lof5

System Cal | s nmap(2)

NAME

mrap - nap pages of menory

SYNOPSI S

#i ncl ude <sys/ mman. h>

voi d *nmmap(voi d *addr, size_t len, int prot, int flags, int
fildes, off_t off);

DESCRI PTI ON

The nmmap() function establishes a mapping bet ween a
process’s address space and a file or shared nenmory object.
The format of the call is as follows:

pa = muap(addr, len, prot, flags, fildes, off);

The rmmap() function establishes a mapping between the
address space of the process at an address pa for |len bytes
to the nmenory object represented by the file descriptor
fildes at offset off for len bytes. The value of pa is a
function of the addr argunent and val ues of flags, further
described below A successful nmap() call returns pa as its
result. The address range starting at pa and continuing for

len bytes wll be legitimte for the possible (not neces-
sarily current) address space of the process. The range of
bytes starting at off and continuing for len bytes will be

legitimate for the possible (not necessarily current)
offsets in the file or shared nmenory object represented by
fildes.

The mmap() function allows [pa, pa + len) to extend beyond
the end of the object both at the tine of the mmap() and
whil e the mappi ng persists, such as when the file is created
prior to the wmmp() call and has no contents, or when the
file is truncated. Any reference to addresses beyond the end
of the object, however, wll result in the delivery of a
SI GBUS or SI GSEGV signal. The mmap() function cannot be used
toinplicitly extend the length of files.

The mapping established by mrap() replaces any previous map-
pings for those whole pages containing any part of the
address space of the process starting at pa and continuing
for len bytes

If the size of the mapped file changes after the call to
mmap() as a result of sone other operation on the mapped
file, the effect of references to portions of the nmapped
region that correspond to added or renoved portions of the
file is unspecified

The mmap() function is supported for regular files and
shared menory objects. Support for any other type of file is
unspeci fi ed.

The prot argunent determ nes whether read, wite, execute,
or sonme conbination of accesses are pernitted to the data
bei ng mapped. The prot argunment should be either PROT_NONE
or the bitwise inclusive OR of one or nore of the other
flags in the following table, defined in the header
<sys/ mman. h>.

PROT_READ
Data can be read.

PROT_WRI TE
Data can be witten.

PROT_EXEC
Data can be executed

PROT_NONE
Dat a cannot be accessed

If an inplenentation of mmuap() for a specific platform can-
not support the conbination of access types specified by
prot, the call to mmp() fails. An inplenmentation nmay permt
accesses other than those specified by prot; however, the

Tiel/finome/rodin/man_mmap_SunOS

18.01.2007 14:50

20f 5

Inplenentation wil not permt a wite to succeed where
PROT_WRI TE has not been set or pernit any access where
PROT_NONE al one has been set. Each platformspecific inple-
mentation of rmmap() supports the foll ow ng values of prot:
PROT_NONE, PROT_READ, PROT_WRI TE, and the inclusive OR of
PROT_READ and PROT_WRI TE. On some platforms, the PROT_WRI TE
protection option is inplenented as PROT READ| PROT_WRI TE and
PROT_EXEC as PROT_READ| PROT_EXEC. The file descriptor fildes
is opened with read pernission, regardl ess of the protection
options specified. If PROT VR TE i s speci fied, the applica-
tion must have opened the file descri ptor fildes with wite
permission unless MAP_PRIVATE is specified in the flags
argument as described bel ow.

The flags argunent provides other information about the
handling of the nmapped data. The value of flags is the bit-
wi se inclusive OR of these options, defined in <sys/nman. h>:

MAP_SHARED
Changes are shared.

MAP_PRI VATE
Changes are private.

VAP_FI XED
Interpret addr exactly.

MAP_NORESERVE
Do not reserve swap space.

MAP_ANON
Map anonynous nenory.

MAP_ALI GN
Interpret addr as required alignent.

The MAP_SHARED and MAP_PRI VATE opti ons descri be the disposi-
tion of wite references to the wunderlying object. If
MAP_SHARED is specified, wite references wll change the
menory object. |If MAP_PRIVATE is specified, the initial
wite reference will create a private copy of the nenory
object page and redirect the napping to the copy. The
private copy is not created until the first wite; until
then, other users who have the object mapped MAP_SHARED can
change the object. Either MAP_SHARED or MAP_PRI VATE nust be
speci fied, but not both. The mapping type is retained across
fork(2).

When MAP_FIXED is set in the flags argument, the system is
informed that the value of pa nust be addr, exactly. If
MAP_FI XED is set, mmap() may return (void *)-1 and set errno
to EINVAL. If a MAP_FI XED request is successful, the map-
pi ng establi shed by nrmap() repl aces any previous nmappings
for the process’s pages in the range [pa, pa + len). The use
of MAP_FI XED i s discouraged, since it nay prevent a system
from maki ng the nmost effective use of its resources.

Wen MAP_FI XED is set and the requested address is the sane
as previous nmapping, the previous address is unmapped and
the new mapping is created on top of the old one.

Wen MAP_FI XED i s not set, the systemuses addr to arrive at
pa. The pa so chosen will be an area of the address space
that the system deens suitable for a mapping of |len bytes to
the file. The mmp() function interprets an addr value of O
as granting the systemconplete freedom in selecting pa,
subject to constraints described below. A non-zero val ue of
addr is taken to be a suggestion of a process address near
whi ch the mapping shoul d be placed. Wen the system sel ects
a value for pa, it will never place a mapping at address O,
nor wll it replace any extant nmapping, nor nap into areas
considered part of the potential data or stack "segnments".

When MAP_ALIGN is set, the system is informed that the
alignnment of pa nust be the same as addr. The alignnent
val ue in addr must be 0 or sone power of two nmultiple of
page size as returned by sysconf(3C). If addr is 0, the
systemw || choose a suitable alignment.

Tiel/finome/rodin/man_mmap_SunOS

18.01.2007 14:50

30f 5

The NMAP_NORESERVE option specities that no swap space be
reserved for a mapping. Wthout this flag, the creation of a
writabl e MAP_PRI VATE mappi ng reserves swap space equal to
the size of the nmapping; when the mapping is witten into,
the reserved space 1s enployed to hold private copies of
the data. A wite into a MAP_NORESERVE nmappi ng produces
results which depend on the current availability of swap
space in the system If space is available, the wite
succeeds and a private copy of the witten page is created,;
if space is not available, the wite fails and a SI GBUS or
SIGSEGY signal is delivered to the writing process.
MAP_NORESERVE nappi ngs are inherited across fork(); at the
time of the fork(), swap space is reserved in the child for
all private pages that «currently exist in the parent;
thereafter the child s mappi ng behaves as described above.

When MAP_ANON is set in flags, and fildes is set to -1,
mmap() provides a direct path to return anonynous pages to
the caller. This operation is equivalent to passing map()
an open file descriptor on /dev/zero with MAP_ANON el i ded
fromthe flags argunent.

The off argunent is constrained to be aligned and sized
according to the value returned by sysconf(3C) when passed
_SC _PAGCESI ZE or _SC PAGE_SI ZE. When MAP_FI XED is specified,
t he addr argument nust also neet these constraints. The
system perforns nappi ng operations over whole pages. Thus,
while the len argunent need not neet a size or alignment
constraint, the systemwll include, in any napping opera-
tion, any partial page specified by the range [pa, pa +
| en).

The systemwi ||l always zero-fill any partial page at the end
of an object. Further, the systemw Il never wite out any
nodi fied portions of the | ast page of an object which are
beyond its end. References to whole pages follow ng the end
of an object will result in the delivery of a SIGBUS or SIG
SEGV signal. SIGBUS signals may al so be delivered on various
file systemconditions, including quota exceeded errors.

The mmap() function adds an extra reference to the file
associated with the file descriptor fildes which is not
renoved by a subsequent close(2) on that file descriptor.
This reference is renoved when there are no nore mappi ngs to
the file by a call to the nmunmap(2) function.

The st_atine field of the nmapped file nmay be nmarked for

updat e at any time between the mmap() call and the
correspondi ng nunmap(2) call. The initial read or wite
reference to a mapped region will cause the file' s st_atinme

field to be marked for update if it has not already been
mar ked for update.

The st_ctime and st_ntime fields of a file that is napped
with MAP_SHARED and PROT_WRITE, will be marked for update at
sone point in the interval between a wite reference to the
mapped region and the next call to msync(3C) with M5_ASYNC
or M5_SYNC for that portion of the file by any process. | f
there is no such call, these fields may be nmarked for update
at any tine after a wite reference if the wunderlying file
is nodified as a result.

If the process calls mockall (3C with the MCL_FUTURE fl ag,
the pages mapped by all future calls to mmap() will be
| ocked in nenory. In this case, if not enough nenory could
be | ocked, mmap() fails and sets errno to EAGAI N

RETURN VALUES

Upon successful conpletion, the nmmp() function returns the
address at which the mapping was placed (pa); otherw se, it
returns a value of MAP_FAILED and sets errno to indicate the
error. The synmbol MAP_FAILED is defined in the header
<sys/ mman. h>. No successful return frommmap() wll return
the val ue MAP_FAI LED.

If mmap() fails for reasons other than EBADF, EINVAL or
ENOTSUP, sonme of the nappings in the address range starting
at addr and continuing for |en bytes may have been unmapped.

Tiel/finome/rodin/man_mmap_SunOS

18.01.2007 14:50

Tiel/finome/rodin/man_mmap_SunOS

ERRORS
The mmap() function will fail if:
EACCES The fildes file descriptor is not open for read
regardless of the protection specified; or fildes is
not open for wite and PROT_WRI TE was specified for a
MAP_SHARED t ype nappi ng
EAGAI N The mappi ng could not be | ocked in nenory.

There was insufficient roomto reserve swap space for
t he mappi ng.

EBADF The fildes file descriptor is not open (and MAP_ANON
was not specified).

El NVAL The argunents addr (if MAP_FI XED was specified) or off
are not multiples of the page size as returned by sys-
conf ().

The argunent addr (if MAP_ALIGN was specified) is not
0O or sone power of tw multiple of page size as
returned by sysconf(3C).

MAP_FI XED and MAP_ALI GN are both specified

The field in flags is invalid (neither MAP_PRIVATE or
MAP_SHARED i s set).

The argunent |len has a value equal to O.

MAP_ANON was specified, but the file descriptor was

not -1.

EMFILE The nunber of napped regions woul d exceed an
i mpl erent ati on-dependent limt (per process or per
system.

ENOCDEV The fildes argunent refers to an object for which
mmap() i s neaningl ess, such as a term nal

ENOVEM The MAP_FI XED option was specified and the range
[addr, addr + len) exceeds that allowed for the
address space of a process.

The MAP_FI XED option was not specified and there is
insufficient room in the address space to effect the

mappi ng.

The mapping could not be |locked in menory, if required
by mockall (3C), because it would require nore space
than the systemis able to supply.

The conposite size of len plus the I|engths obtained
from all previous calls to mmap() exceeds RLIM T_VVEM
(see getrlinmt(2)).

ENOTSUP The system does not support the conbination of
accesses requested in the prot argument.

ENXIO Addresses in the range [off, off + len) are invalid
for the object specified by fildes.

The MAP_FI XED option was specified in flags and the
conbination of addr, len and off is invalid for the
obj ect specified by fildes.

EOVERFLOW
The file is a regular file and the value of off plus

Il en exceeds the offset maxi mum establish in the open
file description associated with fildes

The mmap() function may fail if:

EAGAIN The file to be mapped is already | ocked using advisory
or mandatory record | ocking. See fcntl (2).

40f 5 18.01.2007 14:50

50f 5

USAGE

Use of nmmap() may reduce the amount of nenory available to
ot her menory allocation functions.

MAP_ALIGN is useful to assure a properly aligned val ue of pa
for subsequent use wth nencntl(2) and the MC_HAT_ADVI SE
conmand.

This is best used for large, long-lived, and heavily refer-
enced regi ons. MAP_FI XED and MAP_ALIGN are al ways
mut ual | y- excl usi ve.

Use of MAP_FIXED may result in wunspecified behavior in
further wuse of brk(2), sbrk(2), malloc(3C), and shmat(2).
The use of MAP_FI XED is discouraged, as it may prevent an
i mpl ementati on from making the nopst effective use of
resour ces.

The application must ensure correct synchronization when
using mmap() in conjunction wth any other file access
met hod, such as read(2) and wite(2), standard input/output,
and shmat (2).

The mmap() function has a transitional interface for 64-bit
file offsets. See |f64(5).

The mmap() function allows access to resources using address
space mani pul ations instead of the read()/wite() interface.
Once a file is mapped, all a process has to do to access it
is use the data at the address to which the object was
mapped.

Consi der the foll ow ng pseudo-code:

fildes = open(...)

| seek(fildes, offset, whence)
read(fil des, buf, Ien)

/* use data in buf */

The following is a rewite using nmap():

fildes = open(...)

address = mmap((caddr_t) 0, len, (PROT_READ | PROT_WRI TE),
MAP_PRI VATE, fildes, offset)

/* use data at address */

ATTRI BUTES

See attributes(5) for descriptions of the following attri-
but es:

SEE ALSO

| ATTRI BUTE TYPE ATTRI BUTE VALUE
I
| I'nterface Stability St andard
I
| M- Level Async- Si gnal - Saf e
I
cl ose(2), exec(2), fentl (2), fork(2), getrlimt(2),
mencnt!| (2), nprotect(2), munnmap(2), shmat(2), |ockf(30),
m ockal I (3C), msync(3C), plock(3C, sysconf(3Q0)), attri -
butes(5), If64(5), standards(5), null (7D), zero(7D)
SunCs 5.9 Last change: 10 Apr 2002

Tiel/finome/rodin/man_mmap_SunOS

18.01.2007 14:50

