PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON PARALLEL AND DISTRIBUTED
PROCESSING TECHNIQUES AND APPLICATIONS

PDPTA'98

Volume I

Editor:
H. R. Arabnia

Associate Editors:
Rajkumar Buyya
R. A. Olsson
R. Pandey
X-H Sun

Las Vegas, Nevada, USA
July 13 - 16, 1998
CSREA Press

PDPTA *98 International Conference

159

.. ARéVi :
A Distributed Virtual Reality Toolkit Based on
an Oriented Multiagent Language

V. Rodin, S. Morvan, A. Nédélec
Ecole Nationale d’Ingénieurs de Brest
Laboratoire d’Informatique Industrielle

Technopole Brest-Troise, CP 15

Abstract AREVi is a Distributed Virtual Reality
Toolkit. AREVT is built on our dynemic multiagent

language, oRis. This dynamic language is particu-
larly well adapted to the creation of co-operative ap-
plications. In fact, during an AREVi session, this
language allows the addition of new entities, and
the modification of the behavior of an enfity or a
whole entity family. The modifications may either
be introduced by the user or received by the network.
In this article, we mainly present the co-operative
characteristics of AREVi which allow several ap-
plications (AREVi sessions) to share the same 3D
universe.

Keywords: Distributed Virtual Reality, Dynamic
Multiagent Languages, Java Network Communica-
tion, Mobile Agents.

' Introduction

RéVi (Atelier de Réalité Virtuelle) is a plat-
form for the development of applications in
tributed Virtual Reality. It is developed in
CH++ and its kernel is independent from 3D
libraries. It may be used for rapid application
elopment in distribution of “real time” 3D
dlization, with or without the immersion
iuman operators. It may also be used for
fative work applications or distributed
cations integrating universes inhabited by
whose behaviors are more or less com-

29608 Brest Cedex, France
e-mails:{rodin,morvan,nedelec}@enib.fr

plex. The behaviors of those agents are very
precisely and simply described in oRis {1, 2],
an agent-oriented object language.

The main two aspects of AREVI are the
agent distribution and the co-operation bet-
ween agents. For example, ARéV: allows the
creation of distributed simulations where the
different agents are spread out on different
nodes of a network. This particularly allows
to:

- distribute the agent behavior calcunlations
on several computers,

- make several human agents co-operate,
cach of them driving a particular appli-
cation.

Besides, co-operation between software agents
is possible, whether the agents are distributed
or not. On each site participating to a dis-
tributed co-operative session of AREVi, one
can make “real agents” evolve among agent
proxies or “ghosts” whose behavior is simpler
than their “real agents” and are located on dis-
tants sites participating to the session.

At any time, an A REVi application may ei-
ther join or leave a collective simulation, brin-
ging along or ftaking away its own agents.
[ventually, when leaving a simulation, it may
mave ifs agents towards other applications
which participate to the simulation. In fact,
to move an agent, it is only necessary to trans-
mit some ofiis code through the network.

160

~.

PDPTA *98 International Conference

Finally, some applications may simply listen
to events on the network, thus only moving
agent’s ghosts whose “real agents” participate
to the application.

Our study is part of a large amount of re-
search works in virtual reality and distribu-
ted simulation toolkit such as VR-DECK {3},
DIVE {4}, NPSNET/DIS [5, 6], and on 3D ani-
mation and interaction as VB-II [7], Virtual
Studio {8].

These last years, concurrently to those stu-
dies, a great effort has been made by designers
and publishers so as to improve the rendering
algorithm and elaborate efficient graphic en-
gines. Various commercial products can be
found: World Toolkit (Sense8, 1991), dVISE
(Division) or Clovis (MEDIALAB, 1995).

As far as standardization is concerned,
we witness the emergence of a descrip-
tion standard for virtual reality applications:
V.R.M.L. 2.0 [9], even though the behavioral
or distributed aspects are not really taken into
account yet. On the communication part, the
next version of the IP protocol (IP v6) intro-
duces the notion of flow and includes the multi-
point in native, essential in Distributed Virtual
Reality.

Therefore, a proposal for a new toolkit ar-
chitecture for virtual reality has to be widely
opened and as independent as possible from
the rendering libraries, so as to be able to use
the best solutions [10, 11]. 1t should be able to
describe larger and larger environments, made
up of agents with more and more complex be-
haviors.

Firstly, in the following part of this arti-
cle, we will present our ARéVi platform and
oRis language. Then, we will describe the dis-
tributed aspects of our platform in details.

2 ARéVi and oRis

2.1 ARéVi Platform

AREVi is a Distributed Virtual Reality plat-
form. AREVi lies in the Entity, Scene and
Viewer concepts (see figure 1).

Figure 1: Entity, Scene and Viewer concepts.

The entities are identified agents in space,
with a 3D representation. This representation
includes animations (succession of consecutives
representations) as well ds several levels of de- -
tails (reduction of the facets’ number according
to the distance from the camera). Then, the
entities may be specialized (in an object pr
gramming sense) as cameras, lights or every:
other kind needed by the user [12].

In an ARéVi session, each entity is.an
agent. Therefore, we have built our AR
platform around our dynamic multiagent: Ia
guage, ofis.

2.2 oRis Language

Multiagent formalism as well as the dyn
characteristics and generics of a langqag
specifically well adapted in a virtual reality
tem context. }
Let’s consider two kinds of existin
guages: multiagents and “genera
oriented. Most multiagent systems;
cribed by Starlogo [13], are designed for
cific application and cannot be used in
context. On the opposite, general lan
for example Java, are by deﬁnitioni_n')
lized, they have some dynamic prope
not all those we require: in particul
tance granularity is not present. il}-bﬁ
platform we want to be able to:]
method not only on the class level
on the nstance level at the same.
means that the instance may have

PDPTA 98 International Conference

161

rent behavior from those defined in its original
class.

To totally fulfill our needs, we have deve-
loped our own language: the oRis language
which is a dynamic multiagent language {1, 2].

2.2.1 oRis concepts

Firstly, oRis is an object language: use of
classes with attribute and methods. The syn-
tax is close to C4+4. It embeds most of the
language possibilities including multiple inhe-
ritance. It is also an agent language: every ob-
ject with a main() method becomes an agent,
or active object. This method is cyclically exe-
cuted by the system scheduler and thus con-
tains the entity behavior.

It has to be noticed that, during a simula-
tion cycle the activation order of the different
main() methods is randomly accessed.

- 2.2.2 oRis’s dynamic properties

'b_RiS is also a dynamic language. It is able
when executed to accept new code, define new
lasses and re-define methods on the class level
as’iwell as on the instance level. Then, it is pos-
ible to add on the instance level the definition
of‘a new method which does not exist in the
ginal class. Al those possibilities make this
_;}é_ﬁnic language particularly well adapted to
e creation of co-operative applications. In
cti during a session, this language allows the
on of new entities (planned or not when
g the session), the modification of be-
on an entity or an entire entity family.
se modifications may either be introduced
he user {through an [ICT or a peripheral)
‘the network.

-oRis agents’ naming

"Ri_.._ language proposes the type “name
ance” which makes it possible for the

‘the notion of pointer to instances
Actually, a value of the type “name
e”:is not an instance but something
o refer to it.

A value of the type “name of instance” is
written as a class name followed by a dot and
an integer representing an instance number
which allows to make distinction between in-
stances of the same class. For a given class,
this integer is automatically incremented by
the system when creating each instance with
the new instruction. If you need to define your-
self the instance name, you can use the oRis
create() function. The creation doesn’t oc-
cur in the case of an instance already named.

2.2.4 oRis code examples

The following oRis code states the definition of
a class A as well as the instantiation of three
agents from this class:

// class A
class A{
void main{void);
}
void A::main(void){
println("I am “,this);
}

// instances creation

executed
new A; /> A
create(f.4); // —> A.4
new Aj // —> A.G
}

The result of two cyclical executions of the
agent’s method main() are represented be-
neath:

am A.4
am A_1

R
=
W = o

am

During this execution, the following oRis
code can also be introduced if defined by a
user or received {rom the networlk. In this code
we deline a new class B, which inherits from
class A, we instantiate an agent from this class
and we also redefine dynamically the method
main(} of the pre-instantiate agent A.4.

.—______w___________‘—________—__‘!

PDPTA 98 Internatioﬁal Conference

// class B inherits class A
class B : & {
void setB{(int value);
int b
}
void B::setB(int value)d{
b = value;
}
// instance creation from class B
executed
new B; // -—> B.1
¥
// A.4 : main’s method re-definition
void A.4::main(void){
printIn("I am an agent, my name is A.4");

}

Therefore, after the insertion of this code,
the results of two cyclical executions of the
agent’s method main() are represented be-
neath:

[= e
B

am an agent, my name is A.%4

.

2.2.5 oRis/C++ coupling

oRis allows a deecp coupling with C4++ lan-
guage. The programmer can specify a connec-
tion between an oRis class and a C++ class.
The call of native reported oRis methods ini-
tiates the associated C++ methods.

Thanks to the oRis/Ct-+ coupling, AREV:
offers the user predefined oftis classes (native
methods) which correspond to 3D graphical
classes libraries like OpenGlL, Openlnventor on
Silicon Graphics.

Moreover, thanks to the oRis/C++ cou-
pling, oRis may be connected to other lan-
guages. l'or example, we are able to call Java
for network communication.

3 Distribution in ARéVi

In its basis version, oftis authorizes different

types of communications between agenis lo-

cated on the same machine: synchronous (di-
rect method’s call), peer-to-peer (message box)
and diffusion (events emission towards agents).

Thus, we have developed a communication {
layer allowing communication among distant
agents located on different machines.

Besides, on each collaborating site in a dis-
tributed A RéVi session, we have decided to
make “real’ agents (full behavior agents) evolve .
between proxies (“ghosts” of “real” agents hav-
ing a simplified behavior) located on the other
sites. The “real” agent management is made in
oRisin order to take advantage of the possibili-
ties given by the communication layer between
agents on other sites. Agent migration is also
made by simply transmitting some oRis code
on the network.

3.1 Distribution of agents communi-
cation

In AREVi, low level communications are per- =
formed thanks to Java programming language.
The choice of this language may be penalizing
when talking about performances (-20%), biit
it, offers some very interesting development f; '
cilities in terms of simplicity (multi—threa,ding
safety (pre-exisiing group of safe communica:
tion classes), HCI (JavaBeans), integration of
multimedia processing (Java Media Players),
high level network extension (servlets, RM
aglets), interoperability (CORBA’s IIOP)’ and

Kravser Web 3 .

£/

Remal Imszsl n

@b

Externad devices Local Host

PDPTA 98 International Conference

163

First of all, to launch an A RéVisession, it’s
necessary to start on the Java Virtual Machine.
Then, the AREVi session has to be launch in
the main Java thread. This architecture al-
lows to very easily add new functionalities by
setting them in new threads.

Moreover, because of oRis/C++ coupling, it
is possible to write, in oRis, C4-4 native me-
thods. With J.N.I (Java Native Invocation) we
have another closing connection between Java
and C++, and thus we are able to reach Java
objects from oRis agents, through a pointer on
the Java Virtual Machine. The whole commu-
‘nication is written in Java, the programmer
only uses the oRis layer, where everything is
agent. The C++ is acting as an interface from
oRis to Java.

We have developed different communication
classes (Unicast, Broadcast, Multicast), with
cach time, the notion of clients and servers.
Each client and each server is a particular oftis
agent. Therefore, by inheritance, any kind of
agent can transmit or receive a message. Each
message passing through the network is iden-
tified thanks to the transmitter agent’s name
and TP address.

* Those different functionalities allowed us to
extend the communication basis classes bet-
‘ween oRis agents. Thus, oRis agents on diffe-
rent machines may use both kinds of commu-

nications, asynchronous (peer-to-peer) or dif-
fusion (emission of events towards the agents).
~Today, we are working on the synchronous
mmunication between distant agents (direct
ethod’s call). For this, we are thinking about
heuse of R.M.I Java package (Remote Method
nvocation) or a compliant CORBA 2.0 broker
llowing us to use the Common Objects Ser-
es Specification (COSS) they are defining
istant method invocation.

“Real” and

management

“ghosts” agents

1 the approach (agent/ghost) we use
distribution of AREVi sessions, co-
on between “real” agents and his

ts is made on a very simple way by writing

oRis classes. Therefore, to distribute an agent,
it only has to inherit the co-ordination classes.

3.2.1 “Real” and “ghosts” creation

When creating a shared real agent, an AREV:
application diffuses this creation to other appli-
cations involved in the co-operagive session. It
asks them to create a ghost (sending some oRis
code). The created ghost will evolve thanks to
its simplified behavioral model.

The oRis code sent for the creation of ghosts
has to take into account the naming of oRis
agents described in section 2.2.3.

In fact, in the case of simultaneous instan-
tiation of two agents from class A on different
hosts (IP 1 and TP 2), those agents can have
the same name. Therefore, it is necessary to
distinguish the ghosts from the agents. The
solution is to create a ghost for each real agent.

This can be done by simple inheritance
and diffusion through the network so that the
names of created ghosts enclose the IP address
of the host on which the agent has been created
(TP1A.1 on host IP 2 or IP2A.1 on host IP 1).

Figure 3 presents the ghosts’ creation on
hosts IP 2 and IP 3 of the real agent A.l lo-
cated on host IP 1.

Real Agent Al
(located on Host 1P 1)

Host IP 1

UDP Emission of

iPLA class definition and
“execute{ crearc(IPEALL); }"

Ghosts of At

Hast 1P 2 {Reaj A1 on Host IP 1) HostIP 3
Figure 3: Creation of “real” and “ghost”
agents.

164

.

FPDPTA '98 International Conference

This creation implies the emission of oRus
code on the network. This code described here-
after contains, the new class (IP14) statement
deriving from class Ghost, the simplified model
of real agent, and the order of creation of the
ghost TP1A.1.

class IP14A : Ghost {
// ghost's naming of an agent from
// class A located on host IP 1

¥
// instance creafion of ghost IP1A.1
execute{
create(IP1A.1) // ——> TP1A.1
}

To make it simple and fast, the code emis-
sion is made in multicast. But using a data-
gram transmission can induce a loss of informa-
tion on the network. The fact that an order of
ghost’s creation does not reach its destination
may occur. We have set up a simple and relia-
ble mechanism to solve the problem. Actually,
when an application is ordered to update an
unknown ghost, it asks the broadcasting appli-
cation to send further information in peer-to-
peer TCP (reliable mechanism).

3.2.2 “Real” and “ghost” behavior

“Real” agents have a developed behavior des-
cribed in oRis. Ghosts have a simplified be-
havioral model which requires few calculation.
Today, this model is a kinematical model {co-
ordinates, position and orientation, speed and
acceleration).

“Real” agents are aware of the model used
by ghosts, which allows to practice some
“dead-reckoning”: they only diffuse their state
to their ghosts if this one is significantly diffe-
rent from the state predicted by ghosts. This
action aims to reduce the traffic on the net-
work.

When the difference is important between
the agent’s real state and the state of the ghost
predictive model, the agent transmits towards
its ghosts an updating order (still by sending
some ofRis code}.

Figure 4 presents the updating of ghosts
from the session holding the real agent.

Real Agent Al
(located on Host IP 1)

Host [P 1

UDP Emission of
“execute{ IP1A.l >move(x,y,z) }"

Ghosts of ALl

Host IP 2 (Real A1 on HostIP 1) Host IP 3

Figure 4: Updating “ghosts” from “real”
agent.

The oltis code sent to update a ghost’s po-
sttion 1s very simple:

// updating order of a ghost’s position
executed

IP1A.1 ~> move (x,¥.Z);
}

The method called move() corresponds to a
method common to every agent in an AREV:
session. It allows the modification of the
agents’ position in 3D space.

3.2.3 “Real” and “ghost” interactions

During the interaction of the user or an agent
with another agent, things will happen in a
different way whether this latest is a real agent
or a ghost:

- the real agent will treat the interaction,
~ the ghost will send a request (in oRis) to

its leading agent or, if it is able to do it;
treat by himself the interaction.

In the ghost request mode to the leading
agent, the communication uses the TCP mode:
Therefore, the agent is able to send to its “mas
an order to move. Then the “mastes” will
transmit this order to the ghosts located on
other lhosts {see figure 5). o

ter”

PDPTA °98 International Conference

165

TCP
Socket Host1P 1

2) UDP Emission of
‘execute{ IP1A.l >move (x,y,z); }"

IPLA.I
1} TCP Emission of
HostIP 2 “execute{ Host IP 3
Al >move(x,y,2);
o
Figure 5: Updating “real” agent from
“shosts”.

3.2.4 Agents’ migration

In our AREVi platform we need to have the
ability to move agents from an AR€EVi session
to another. These migrations can only be ob-
tained if it’s possible to move our agent’s beha-
vior on the network.

- This may be easily done thanks to oRis be-
_ cause, to move an agent, it is only necessary
_'to transmit, in TCP mode, some oRis code
through the network described in a simple way
as follows:

. /f class A
‘class A{

// methods runnable by an A agent
¥

// instance creation order

execute{

new A; // —> AH
}

For ghosts’ renaming reasons we need to
nsmit in UDP mode the following oliis code:

/7 class A

3c1ass IP2A : Ghost{

[/ ghost’s naming of an agent from
// class A located on host IP 2

'/ ghost's renaming order
é't__ute{
P1A.1->rename (IP24.4);

The migration of agent A.1 from host [P 1
toward Host IP 2 is represented in figure 6.

TP
Socket

HostIP 1

5

-

i

Host IP 3

HostiP2 ’
2) UDP Emission of
[P2A class definition
+ Ghosts renaming order

Figure 6: Agent’s migration.

4 Conclusion

The AReéVi platform, built around the oRis
language, has been made for developing Dis-
tributed Virtual Reality applications. The
existence of a dynamic multiagent language
into the system allows us to create modular
3D universes; modularity is made possible by
the lack of general controler and thus by the
use of elementary “bricks” with their own goals
{agents).

Thanks to oRis, we are also able to mo-
dify these 3I) universes when a session is in
progress; this may be done by introducing some
oRis code by a user action (through an HCI or
a peripheral) or by the network.

This essential characteristic of the oRis lan-
guage allowed us to develop a group of com-
munication classes (asynchronous, broadcast)
and to move agents on the network. The de-
velopment of a Distributed Virtual Reality ap-
plication according to the “real” and “ghost”
agent model adopted under AREVI may be
done by simple inheritance of existing classes.
The classes we have developed allow proper

166

\.

PDPTA *98 International Conference

“ghosts” naming on the network and suitable
interactions and updates between “real” enti-
ties and their “ghosts”.

5 Future works

Today, we work on the synchronous commu-
nication (call of methods) between distant
agents. We are also studying the great possibi-
lities given by the oRis language which makes
feasible cooperative work prototyping accor-
ding to specific configurations. For exam-
ple, the distribution of an agent’s methods on
different sites to manage load balancing bet-
ween workstations and the number of con-
nected users on the same distributed AREV:
session.

References

(1] F. Harrouet, R. Cozien, P. Reignier, and
J. Tisseau. oRis, un langage pour sim-
ulations multi-agents. In Journées IFran-
cophones de Ulntelligence Artificielle Dis-
tribuée et des Systémes Multi-Agents, La
Colle-sur-Loup, April 1997.

[2] Harrouet F. Virtual reality for interactive
prototyping. Technical report, ENIB/LI2,
1998.

[3] Codella C.F, Jalili R., Koved L. , and
Lewis J.B. A toolkit for developing multi-
user, distributed virtual environnements.
In IEFEE Virtval Realily Annual Interna-
tional Symposium, 1993.

[4] Carlsson C. and Hagsang O. Dive ~ a
platform for multi-user virtual environ-

nement. Computer and Graphics, pages
663669, 1993,

[5] Brutzman D.P. A virtual world for an au-
tonomous underwater vehicle. PhD the-
sis, Naval Postgraduate School, Monterey,
California, 1994.

(6] Macedonia M.R. A Network software Ar-
chitecture For Large Scale Virtual Fnvi-

18]

91

[13]

ronnements. PhD thesis, Naval Postgrad-
uate School, Monterey, California, 1995.

Gobbetti E. Virtuality Builder Il, vers
une architecture pour [’interaction avec
des mondes synthétiques. PhD thesis,
EPFL DI-LIG, 1993.

Balaguer J.F. Virtual Studio : Un
systeme d’animation en environnement
virtuel. PhD thesis, EPFIL DI-LIG, 1993.

Hartman J. and Wernecke J. The VRML
2.0 Handbook : Building Moving Worlds
on the Web. Addison-Wesley Publishing
Company, 1996.

Roohlf J. and Helman J. Iris performer: A
high performance multiprocessing toolkit
for real-time 3d graphics. In ACM SIG-
GRAPH, pages 381-393, 1994.

Strauss P.S. and Carey R. An object-
oriented 3d graphics toolkit. In ACM SIG-
GRAPH, pages 341-347, 1992.

Reignier F., Harrouet F., Morvan S., Tis-
seau J., and Duval T. ARé&ViI 4.0: A
virtual reality multiagent platform. In
Virtual Worlds, July 1-3 1998, Paris
(France), 1998.

M. Resnick. Starlogo : An environment
for decentralized modeling and decentral-
ized thinking. In CHI, pages 11-12, April
96.

